Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

March 19 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 6.1, 6.2*, 6.3*.
- Calculus, Spivak, 3rd Ed.: Section 18.

KEYWORDS: one-to-one functions, inverse functions

Inverse Functions

Today we introduce the notion of an inverse function. We will see that the fact that $\exp (x)$ is strictly increasing means the equation $c=\exp (x)$, where $c>0$ is a constant, has a unique solution. Determining this unique solution will require us to recall, in our next lecture, the Fundamental Theorem of Calculus.

Recall: for $x>0$ the exponential function $\exp (x)$ satisfies

$$
\exp (x)>1+x
$$

Hence, $\exp (x)$ is \qquad .
Check your understanding
Draw the graph of the function $\exp (x)$.

Let $c>0$ be your favourite positive real number. Explain why the equation

$$
c=\exp (x)
$$

has a unique solution.

Let $f(x)$ be a function. We say that $f(x)$ is one-to-one if $f(x) \neq f(y)$ whenever $x \neq y$ lie in the domain of f. In words,

$$
f(x) \text { is one-to-one if no two distinct inputs give the same output. }
$$

Example:

1. The function $f(x)=x^{2}, x$ any real number, is not one-to-one because \qquad .
2. The function $f(x)=\frac{2}{1-x}, x>1$, is one-to-one: if there exists x, y such that

$$
f(x)=f(y) \quad \Longrightarrow \quad \frac{2}{1-x}=\frac{2}{1-y} \quad \Longrightarrow \quad 1-x=1-y \quad \Longrightarrow \quad x=y
$$

3. The function $g(x)=x^{2}, x \geq 0$, is one-to-one: if there exists x, y such that $g(x)=g(y)$ then

$$
x^{2}=y^{2} \quad \Longrightarrow \quad \Longrightarrow \quad
$$

Since $x, y \geq 0$ we must have \qquad .
4. The function $h(x)=x^{3}, x$ any real number, is one-to-one: first you can check that

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) .
$$

If $x \neq y$ then the right hand side of the above expression can only be equal to 0 whenever

$$
x^{2}+x y+y^{2}=0 .
$$

By completing the square we find

$$
x^{2}+x y+y^{2}=\left(x+\frac{y}{2}\right)^{2}+\frac{3}{4} y^{2} \geq 0
$$

Thus,

$$
0=x^{2}+x y+y^{2} \quad \Leftrightarrow \quad x+\frac{y}{2}=0 \text { and } y=0 \quad \Leftrightarrow \quad x=y=0
$$

contradicting our assumption that $x \neq y$. Hence, $x^{2}+x y+y^{2}>0$ whenever $x \neq y$, so that $x^{3} \neq y^{3}$ whenever $x \neq y$.

We have the following useful test to determine when a function is one-to-one:

Horizontal Line Test

$f(x)$ is one-to-one if every horizontal line intersects its graph at most once.

Check your understanding

1. Let $f(x)=\exp (x)$ be the exponential function. Explain why $\exp (x)$ is one-to-one.
2. Suppose that $f(x)$ is a strictly decreasing function. Draw a representative graph of the function below

3. Complete the following statements:

- If a function $f(x)$ is strictly decreasing then $f(x)$ is \qquad .
- If a function $f(x)$ is strictly increasing then $f(x)$ is \qquad .

Inverse functions

In this paragraph we will introduce the notion of an inverse function. You have determined above the following result.

Let $f(x)$ be a strictly increasing/decreasing function and let c be a real number.
Then, the equation

$$
c=f(x)
$$

has at most one solution.

Example:

1. Let $f(x)=x^{3}$, with domain being the collection of all real numbers x, and $c=-27$. Then, $x=-3$ is a solution to the equation $-27=x^{3}$. Moreover, this is the only solution.
2. Let $f(x)=1-\frac{1}{x}$, with domain being the collection of real numbers $x>0$. Let $c=-1$. Then, the equation

$$
-1=1-\frac{1}{x}
$$

has the unique solution $x=$ \qquad .
If $c=3$ then \qquad .

Definition: Let $f(x)$ be a function. The range of $f(x)$ is the collection of all outputs of $f(x)$. Example:

1. Let $f(x)=x^{3}$ with domain being the collection of all real numbers x. Then, the range of $f(x)$ is the collection of all real numbers: if c is any real number then $c=(\sqrt[3]{c})^{3}=f(\sqrt[3]{c})$. That is, c is the output of some input for the function $f(x)=x^{3}$.
2. Let $f(x)=1-\frac{1}{x}$ with domain being the collection of all real numbers $x>0$. Then, the range of $f(x)$ is the collection of all real numbers $c<1$: if $c<1$ then $x=\frac{1}{1-c}>0$ satisfies $f(x)=c$.
3. Let $f(x)=2 x^{2}-1, x \geq 0$. Then, the range of f is the collection of real numbers $c \geq-1$: if $c \geq-1$ then $x=\sqrt{\frac{c+1}{2}}$ satisfies $f(x)=c$.

We are now ready to introduce our main definition: let $f(x)$ be a one-to-one function with domain A and range B. Then, its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad y=f(x) .
$$

In words,

If $y=f(x)$ is an output of f then y is an input of f^{-1} and $f^{-1}(y)=x$.

Example:

1. Let $f(x)=1-\frac{1}{x}$ with domain A being the collection of all real numbers $x>0$. The range of f, B, is the collection of all real numbers $y<1$. The function $f(x)$ is one-to-one and its inverse function is

$$
f^{-1}(y)=\frac{1}{1-y}, \quad y<1
$$

2. Let $f(x)=2 x^{2}-1, x \geq 0$.

Important Remarks:

1. To determine the inverse function f^{-1} of a one-to-one function f, solve the equation

$$
y=f(x)
$$

for x in terms of y.
2. It is important to remember that $f^{-1}(y) \neq \frac{1}{f(y)}$, in general. For example, if $f(x)=1-\frac{1}{x}$ then

$$
\frac{1}{f(y)}=\frac{y}{y-1} \neq \frac{1}{1-y}=f^{-1}(y)
$$

3. Let $f(x)$ be a one-to-one function with domain A and range B. Then, f and its inverse function f^{-1} satisfy the following functional relationship:

$$
\begin{array}{ll}
f\left(f^{-1}(y)\right)=y, & \text { for every } y \text { in } B \\
f^{-1}(f(x))=x, & \text { for every } x \text { in } A .
\end{array}
$$

