

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

MARCH 16 LECTURE

KEYWORDS: the exponential function

AN exp-traordinary function II

Recall that

$$\exp(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} = \lim_{m \to \infty} s_m(x).$$

Remark: I claimed yesterday that $\exp(x) = e^x$, where $e = \exp(1) = 2.71828...$ is Euler's number. You should not take anything that I (or anyone else) say(s) on blind faith. We are going to recover a lot of the known properties of e^x directly by analysing the function $\exp(x)$, which should hopefully convince you that my claim has some merit.

We obtained the following

$$\exp(x) \cdot \exp(y) = \underbrace{\mathsf{QYP}(\mathsf{XYY})}_{(*)}$$

Property (*) is similar to an exponent law and has lots of remarkable consequences. For example, suppose that x is any positive real number. Then,

$$1 = \exp(0)$$
$$= \exp(x + (-x))$$
$$= \exp(x) \cdot \exp(-x)$$

In particular,

- $\exp(-x) = \frac{1}{\exp(x)}$, for any real number x.
- $\exp(x) \neq 0$, for any real number x.

CHECK YOUR UNDERSTANDING

1. Use $1 = \exp(x) \exp(-x)$ and the fact that $\exp(x) > 1$, whenever x > 0, to deduce that $\exp(x) > 0$, for all x.

2. Let x < y and write y = x + h, where h > 0. Use (*) to show that $\exp(y) > \exp(x)$. (Hint: recall that $\exp(h) > 1$ whenever h > 0)

Hence, the exponential function is strictly increasing.

3. Based on your investigations, draw the graph of the function $\exp(x)$.

O Calculus, Where Art Thou?

Let h be a real number and consider the series

$$\frac{\exp(h)-1}{h}=1+\frac{h}{2!}+\frac{h^2}{3!}+\ldots=1+\sum_{n=1}^{\infty}\frac{h^n}{(n+1)!}.$$

Using the Ratio Test it can be shown that this series is (absolutely) convergent for any h. CHECK YOUR UNDERSTANDING

1. As h gets close, but not equal, to 0, describe what happens to the expression

$$\frac{\exp(h)-1}{h}$$
 gets close to 1

2. Complete the following statement

$$\lim_{h\to 0}\frac{\exp(h)-1}{h}=\underline{\hspace{1cm}}$$

Recall what it means for a function f(x) to be differentiable at x = a: we say that f(x) is differentiable at x = a if the following limit exists

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}.$$

In this case we write

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

If f(x) is differentiable for every input value x, then we define the derivative of f(x) to be the function

$$f'(x) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Let a be a real number. Using the Remarkable Property, we find

$$\frac{\exp(a+h)-\exp(a)}{h} = \frac{\exp(a)\left[\frac{\exp(h)-1}{N}\right]}{h}$$

Hence,

$$\exp'(a) = \lim_{h \to 0} \frac{\exp(a+h) - \exp(a)}{h} = - (a)$$

Hence,

You have seen, and determined most of, the following properties of $\exp(x)$:

- $\exp(x) > 1$, for any real number x > 0.
- $\bullet \quad \exp(0) = 1.$
- $\exp(-x) = \frac{1}{\exp(x)}$, for any real number x.
- $\exp(x) > 0$, for any real number x.
- $\exp(x+y) = \exp(x) \cdot \exp(y)$, for any real numbers x, y. (*)
- $\exp(x)$ is strictly increasing.
- $\exp(x) = e^x$, where $e = \exp(1)$ is Euler's number.
- $\exp(x)$ is differentiable, for every x, and its derivative is itself

$$\frac{d}{dx}\exp(x)=\exp(x).$$