Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

March 16 Lecture

KEYWORDS: the exponential function

An exp-TRAORDINARY FUNCTION II

Recall that

$$
\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\lim _{m \rightarrow \infty} s_{m}(x)
$$

Remark: I claimed yesterday that $\exp (x)=e^{x}$, where $e=\exp (1)=2.71828 \ldots$ is Euler's number. You should not take anything that I (or anyone else) say(s) on blind faith. We are going to recover a lot of the known properties of e^{x} directly by analysing the function $\exp (x)$, which should hopefully convince you that my claim has some merit.
We obtained the following

Remarkable Property

$\exp (x) \cdot \exp (y)=$ \qquad
Property ($*$) is similar to an exponent law and has lots of remarkable consequences. For example, suppose that x is any positive real number. Then,

$$
\begin{aligned}
1 & =\exp (0) \\
& =\exp (x+(-x)) \\
& =\exp (x) \cdot \exp (-x)
\end{aligned}
$$

In particular,

- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x) \neq 0$, for any real number x.

Check your understanding

1. Use $1=\exp (x) \exp (-x)$ and the fact that $\exp (x)>1$, whenever $x>0$, to deduce that $\exp (x)>0$, for all x.
2. Let $x<y$ and write $y=x+h$, where $h>0$. Use $(*)$ to show that $\exp (y)>\exp (x)$. (Hint: recall that $\exp (h)>1$ whenever $h>0)$

Hence, the exponential function is strictly increasing.
3. Based on your investigations, draw the graph of the function $\exp (x)$.

O Calculus, Where Art Thou?

Let h be a real number and consider the series

$$
\frac{\exp (h)-1}{h}=1+\frac{h}{2!}+\frac{h^{2}}{3!}+\ldots=1+\sum_{n=1}^{\infty} \frac{h^{n}}{(n+1)!} .
$$

Using the Ratio Test it can be shown that this series is (absolutely) convergent for any h.
Check your understanding

1. As h gets close, but not equal, to 0 , describe what happens to the expression

$$
\frac{\exp (h)-1}{h}
$$

2. Complete the following statement

$$
\lim _{h \rightarrow 0} \frac{\exp (h)-1}{h}=
$$

\qquad

Recall what it means for a function $f(x)$ to be differentiable at $x=a$: we say that $f(x)$ is differentiable at $x=a$ if the following limit exists

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

In this case we write

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

If $f(x)$ is differentiable for every input value x, then we define the derivative of $f(x)$ to be the function

$$
f^{\prime}(x) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Let a be a real number. Using the Remarkable Property, we find

$$
\frac{\exp (a+h)-\exp (a)}{h}=
$$

\qquad
Hence,

$$
\exp ^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\exp (a+h)-\exp (a)}{h}=
$$

\qquad
Hence,
The function $\exp (x)$ is \qquad and

$$
\frac{d}{d x} \exp (x)=
$$

You have seen, and determined most of, the following properties of $\exp (x)$:

- $\exp (x)>1$, for any real number $x>0$.
- $\exp (0)=1$.
- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x)>0$, for any real number x.
- $\exp (x+y)=\exp (x) \cdot \exp (y)$, for any real numbers x, y.
- $\exp (x)$ is strictly increasing.
- $\exp (x)=e^{x}$, where $e=\exp (1)$ is Euler's number.
- $\exp (x)$ is differentiable, for every x, and its derivative is itself

$$
\frac{d}{d x} \exp (x)=\exp (x)
$$

Remark: compare these properties with what you know about e^{x}, are there any additional properties that we've yet to show?

Check your understanding
Draw the graph of the function $\exp (x)$.

Let $c>0$ be your favourite positive real number. Explain why the equation

$$
c=\exp (x)
$$

has a unique solution.

