

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

MARCH 15 LECTURE

SUPPLEMENTARY REFERENCES:

- Calculus, Stewart

KEYWORDS: the exponential function

AN exp-traordinary function

In today's lecture we will define a very interesting function using series. Investigating this function will lead us to the notion of an *inverse function*.

Defining a function via a series:

Let x be any real number and consider the series

$$1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES

Use the ratio test to show that the above series is (absolutely) convergent, for every real number

$$a_n = \frac{x^n}{n!}$$
, $\left|\frac{a_{n+1}}{a_n}\right| = \frac{|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x|^n} = \frac{|x|}{n+1} \cdot \frac{n-3\infty}{n+1}$ for any x .

By assigning to every real number x the limit of the series $1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$, we have definition for a function

(INPUT)
$$x \mapsto \exp(x) \stackrel{def}{=} 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$$
 (OUTPUT)

We will call the function $\exp(x)$, defined for every real number x, the exponential function. Remark:

1. Observe that

$$\exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots$$

This series is a series with positive terms, which implies that its sequence of partial sums (s_m) is strictly increasing. In particular, for any m = 0, 1, 2, ...

$$s_m < \exp(1)$$
 and $\lim_{m \to \infty} s_m = \exp(1)$.

Notice that $s_2 = 1 + 1 + \frac{1}{2} = \frac{5}{2}$ and

$$\sum_{n=2}^{\infty} \frac{1}{n!} = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots < \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{6}} = 1$$

Hence,

$$2.5 = \frac{5}{2} = s_3 < \exp(1) = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots < 1 + 1 + 1 = 3$$

so that

$$2.5 < \exp(1) < 3.$$

In fact, you've seen this number before

$$\exp(1) = e$$

This number is called Euler's number, after Leonhard Euler, 1707-1783, a Swiss mathematician and one of the greatest mathematical minds in history.

2. It's possible to show that

$$\exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \qquad --$$

and, more generally,

$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = (\exp(1))^x = e^x$$

In particular,

the exponential function
$$\exp(x)$$
 is e^x

In fact, the series definition of the function $f(x) = e^x$ was the original definition given by Euler.

Let's investigate some of the basic properties of $\exp(x)$.

CHECK YOUR UNDERSTANDING

Using the definition of $\exp(x)$, show that

1.
$$\exp(0) = 1$$
,

2.
$$\exp(x) > 1$$
, for any $x > 0$,
$$\exp(x) = 1 + \left[\sum_{n=1}^{\infty} \frac{n^n}{n!}\right] > 1 + 0 = 1$$

3.
$$\exp(x) > 1 + x$$
, for any $x > 0$.
 $\exp(x) = 1 + x + \left[\sum_{n=2}^{\infty} \frac{2^n}{n!}\right] > 1 + x$

>0

A remarkable property

We are going to investigate a remarkable property of the exponential function. Let x be a real number. For each $m=1,2,\ldots$, denote the m^{th} partial sum of the series $\exp(x)$ by $s_m(x)$, so

$$s_m(x) = 1 + \sum_{n=1}^m \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

We define $s_0(x) = 1$.

CHECK YOUR UNDERSTANDING Let x, y be real numbers.

1. Write down the expressions for $s_1(x)$, $s_2(x)$.

$$S_1(x) = 1+x$$

 $S_2(x) = 1+x+\frac{x^2}{2}$

2. Show that $s_1(x)s_1(y) = s_1(x+y) + additional terms$.

$$S_1(\pi)S_1(y) = (1+\pi)(1+y)$$

= $1+(\pi+y)+\pi y = S_1(\pi+y) + \pi y$

3. Show that $s_2(x)s_2(y) = s_2(x+y) + additional terms$.

$$S_{2}(x)S_{2}(y) = (1+x+x^{2})(7+y+y^{2}) = (1+x+y)+(x^{2}+2xy+y^{2})+x^{2}$$
4. Guess the pattern! Complete the following statement

$$s_3(x)s_3(y) = S_3(x+y)$$
 + additional terms

5. Guess the general pattern! Complete the following statement: for every m = 1, 2, ...

$$s_m(x)s_m(y) = \underbrace{S_m(x,y)}_{+ \text{ additional terms}}$$

6. How might you describe the additional terms that appeared in your investigations above?

products of form
$$\frac{x^k}{k!} \cdot \frac{y^l}{l!}$$
, $k:l>m$.

Recall that

$$\exp(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} = \lim_{m \to \infty} s_m(x).$$

Therefore,

Remarkable Property

$$\exp(x) \cdot \exp(y) = \underbrace{\exp(x + y)}_{(x)}$$
 (*)

Property (*) has lots of remarkable consequences. For example, suppose that x is any positive real number. Then,

$$1 = \exp(0)$$
$$= \exp(x + (-x))$$
$$= \exp(x) \cdot \exp(-x)$$

In particular,

- $\exp(-x) = \frac{1}{\exp(x)}$, for any real number x.
- $\exp(x) \neq 0$, for any real number x.

CHECK YOUR UNDERSTANDING

1. Use $1 = \exp(x) \exp(-x)$ and the fact that $\exp(x) > 1$, whenever x > 0, to deduce that $\exp(x) > 0$, for all x.

2. Let x < y and write y = x + h, where h > 0. Use (*) to show that $\exp(y) > \exp(x)$. (Hint: recall that $\exp(h) > 1$ whenever h > 0)

Hence, the exponential function is strictly increasing.

3. Based on your investigations, draw the graph of the function $\exp(x)$.