Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

March 15 Lecture

Supplementary References:

- Calculus, Stewart

KEYWORDS: the exponential function

An exp-TRAORDINARY FUNCTION

In today's lecture we will define a very interesting function using series. Investigating this function will lead us to the notion of an inverse function.

Defining a function via a series:

Let x be any real number and consider the series

$$
1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Mathematical workout - Flex those muscles
Use the ratio test to show that the above series is (absolutely) convergent, for every real number x.

By assigning to every real number x the limit of the series $1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$, we have definition for a function

$$
\text { (INPUT) } \quad x \quad \mapsto \quad \exp (x) \stackrel{\text { def }}{=} 1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \quad \text { (OUTPUT) }
$$

We will call the function $\exp (x)$, defined for every real number x, the exponential function.

Remark:

1. Observe that

$$
\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots
$$

This series is a series with positive terms, which implies that its sequence of partial sums $\left(s_{m}\right)$ is strictly increasing. In particular, for any $m=0,1,2, \ldots$,

$$
s_{m}<\exp (1) \quad \text { and } \quad \lim _{m \rightarrow \infty} s_{m}=\exp (1)
$$

Notice that $s_{2}=1+1+\frac{1}{2}=\frac{5}{2}$ and

$$
\sum_{n=2}^{\infty} \frac{1}{n!}=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=1
$$

Hence,

$$
2.5=\frac{5}{2}=s_{3}<\exp (1)=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<1+1+1=3
$$

so that

$$
2.5<\exp (1)<3 .
$$

In fact, you've seen this number before

$$
\exp (1)=e
$$

This number is called Euler's number, after Leonhard Euler, 1707-1783, a Swiss mathematician and one of the greatest mathematical minds in history.
2. It's possible to show that

$$
\exp (1)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

and, more generally,

$$
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=(\exp (1))^{x}=e^{x}
$$

In particular,

the exponential function $\exp (x)$ is e^{x}

In fact, the series definition of the function $f(x)=e^{x}$ was the original definition given by Euler.

Let's investigate some of the basic properties of $\exp (x)$.

Check your understanding

Using the definition of $\exp (x)$, show that

1. $\exp (0)=1$,
2. $\exp (x)>1$, for any $x>0$,
3. $\exp (x)>1+x$, for any $x>0$.

A remarkable property

We are going to investigate a remarkable property of the exponential function. Let x be a real number. For each $m=1,2, \ldots$, denote the $m^{t h}$ partial sum of the series $\exp (x)$ by $s_{m}(x)$, so

$$
s_{m}(x)=1+\sum_{n=1}^{m} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}
$$

We define $s_{0}(x)=1$.
Check your understanding
Let x, y be real numbers.

1. Write down the expressions for $s_{1}(x), s_{2}(x)$.
2. Show that $s_{1}(x) s_{1}(y)=s_{1}(x+y)+$ additional terms.
3. Show that $s_{2}(x) s_{2}(y)=s_{2}(x+y)+$ additional terms.
4. Guess the pattern! Complete the following statement

$$
s_{3}(x) s_{3}(y)=+ \text { additional terms }
$$

5. Guess the general pattern! Complete the following statement: for every $m=1,2, \ldots$

$$
s_{m}(x) s_{m}(y)=\ldots+\text { additional terms }
$$

6. How might you describe the additional terms that appeared in your investigations above?

Recall that

$$
\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=\lim _{m \rightarrow \infty} s_{m}(x)
$$

Therefore,

Remarkable Property

$$
\begin{equation*}
\exp (x) \cdot \exp (y)= \tag{*}
\end{equation*}
$$

Property (*) has lots of remarkable consequences. For example, suppose that x is any positive real number. Then,

$$
\begin{aligned}
1 & =\exp (0) \\
& =\exp (x+(-x)) \\
& =\exp (x) \cdot \exp (-x)
\end{aligned}
$$

In particular,

- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\quad \exp (x) \neq 0$, for any real number x.

Check your understanding

1. Use $1=\exp (x) \exp (-x)$ and the fact that $\exp (x)>1$, whenever $x>0$, to deduce that $\exp (x)>0$, for all x.
2. Let $x<y$ and write $y=x+h$, where $h>0$. Use $(*)$ to show that $\exp (y)>\exp (x)$. (Hint: recall that $\exp (h)>1$ whenever $h>0)$

Hence, the exponential function is strictly increasing.
3. Based on your investigations, draw the graph of the function $\exp (x)$.

Summary

- $\exp (x+y)=\exp (x) \cdot \exp (y)$, for any real numbers x, y.
- $\quad \exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x)>0$, for any real number x.
- $\exp (x)$ is a strictly increasing function. (**)

O Calculus, Where Art Thou?

Let h be a real number and consider the series

$$
\frac{\exp (h)-1}{h}=1+\frac{h}{2!}+\frac{h^{2}}{3!}+\ldots=1+\sum_{n=1}^{\infty} \frac{h^{n}}{(n+1)!}
$$

Check your understanding

1. Let $a_{n}=\frac{h^{n}}{(n+1)!}$. Use the ratio test to show that the series $1+\sum_{n=1}^{\infty} a_{n}$ is (absolutely) convergent.
2. As h gets close, but not equal, to 0 , describe what happens to the expression

$$
\frac{\exp (h)-1}{h}
$$

3. Complete the following statement

$$
\lim _{h \rightarrow 0} \frac{\exp (h)-1}{h}=
$$

\qquad

Recall what it means for a function $f(x)$ to be differentiable at $x=a$: we say that $f(x)$ is differentiable at $x=a$ if the following limit exists

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

In this case we write

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

If $f(x)$ is differentiable for every input value x, then we define the derivative of $f(x)$ to be the function

$$
f^{\prime}(x) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Let a be a real number. Using the Remarkable Property, we find

$$
\frac{\exp (a+h)-\exp (a)}{h}=
$$

\qquad
Hence,

$$
\exp ^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\exp (a+h)-\exp (a)}{h}=
$$

\qquad
Hence,
The function $\exp (x)$ is \qquad and

$$
\frac{d}{d x} \exp (x)=
$$

