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SERIES CONVERGENCE TESTS V

Today we will conclude our investigation of convergence tests for series.

Ratio Test

Let 3" a, be a series, where a, # 0.

(i) Iflimpe I“;:‘I = L <1, then the series ¥ a, is (absolutely) convergent.

(i) If imyeo |9§:4[ =L>1, or liMmy,e Igﬁil = +o0, then the series Y a, is
divergent.

(iii) If limpooo |“;‘:‘] = L =1, then the test is inconclusive: we have gained no

additional information on the divergence/convergence of ¥ a,,.

Example:
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As n — oo this last expression tends towards
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2. Consider the series 2, 2 =i~ Here a, = n,, and
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Hence, by the ratio test the series L?vxga&»gf%é.




3. Consider the series Y22, ;2—(% Here a, = %, and
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4. Consider the series Z;’;l Tﬁi Here a, = ——\/%12, and > é‘ (hot) =3
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The root test is inconclusive. However, note that we could apply the Limit Comparison Test
(for example) and compare with the divergent series T n7/2 (it’s a p-series, with p = -7/2) to
deduce that the series ) a, is divergent.

CHECK YOUR UNDERSTANDING

Use the Ratio Test to determine convergence or divergence of the following series. If the Ratio
Test is inconclusive how might you determine convergence?
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A companion to the Ratio Test is the following:

Root Test

Let 3 a, be a series, where a,, # 0.

(1) Iflimpae {f|as|= L <1, then the series Y a,, is (absolutely) convergent.

(i) If imye {‘/]an =L>1, or limy.ee {/|an| = L = +00, then the series ¥ a,
is divergent.

(i) If limpoo ¥/|an| = L = 1, then the test is inconclusive: we have gained
no additional information on the divergence/convergence of ¥ a,,.

To effectively apply the Root Test we need the following rules:

Root Rules
1. limy.e ¥C =1, for any constant C > 0.
2. limp.e ¥/mP =1, for any p> 0.

3. limn.e {/f(n) =1, for any nonzero polynomial f(n) with positive
coefficients.

4. lim, ... Vnl=+0c0.

Example:
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1. Consider the geometric series Y52, (g—,,) Then, a, = & and
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Hence, by the root test, the series is convergent Of course, we knew this already because
this series is a geometnc series with r = g

2. Consider the series Yoo, e 2)" . Then, a, = g_z)n_ and

3 217.3 2 2
Yan] = 3n e \/—_->é— 1—§<1 as n - co by the Root Rules.

Hence, by the root test the series is convergent.

CHECK YOUR UNDERSTANDING
Use the Root Test to determine convergence of the series above.
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3.
Remark: If the Ratio Test can be used to determine convergence of a series ¥ a,, (i.e. the test
is not inconclusive) then the series will also pass the Root Test (although it may be tricky to
find the limit). However, there exists series 3 a, for which the Ratio Test can’t be applied or is
inconclusive but the Root Test is conclusive: an example is the series

oo 1
=, nodd
Z a, where a, = { 2

n=1 5%, T even

This series is a rearrangement of the (absolutely convergent) geometric series Yo zin

Then,

any1 |2, modd
Gn 1/8 n even

and this sequence does not have a limit. However, {/a, = 1/2, for any n, so the Root Test shows
this series is convergent.



Appendix
Let ¥,2; a, be a series, a, #0.

1. The idea behind the Ratio Test is as follows: suppose that lim,_,. I“;‘:‘

= L. Then, as
n - oo, the ratios ]";‘:1| are ‘sufficiently close’ to L. Now, for any k < n we can write

G = G- O+l Oks2 an-1 Gn
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and we can find a constant ¢ so that |a,| can be compared to cL?, for n sufficiently large.

Then, we deduce the behaviour of the series ¥ |a,| by comparing it with the (geometric)
series Y. cL™.

2. The idea behind the Root Test is as follows: if limp-eo ¥/]as| = L then, as n — oo, the terms

of the sequence ({‘/|an]) are ‘sufficiently close to’ L. This means that |a,| can be compared

(in a suitable sense) to L. Then, the behaviour of ¥ a,, is similar to the behaviour of the
geometric series Y L™,



