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Series convergence tests V

Today we will conclude our investigation of convergence tests for series.

Ratio Test

Let ∑an be a series, where an ≠ 0.

(i) If limn→∞ ∣an+1an
∣ = L < 1, then the series ∑an is (absolutely) convergent.

(ii) If limn→∞ ∣an+1an
∣ = L > 1, or limn→∞ ∣an+1an

∣ = +∞, then the series ∑an is
divergent.

(iii) If limn→∞ ∣an+1an
∣ = L = 1, then the test is inconclusive: we have gained no

additional information on the divergence/convergence of ∑an.

Example:

1. Consider the series ∑
∞
n=1

n10

3n . Here an =
n10

3n , and

∣
an+1
an
∣ = =

As n → ∞ this last expression tends towards . Hence, by the Ratio
Test the series .

2. Consider the series ∑
∞
n=1

1
n! . Here an =

1
n! , and

∣
an+1
an
∣ = =

Hence, by the ratio test the series .
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3. Consider the series ∑
∞
n=1

n!
n2(−3)n . Here an =

n!
n2(−3)n , and

∣
an+1
an
∣ = =

Hence, by the ratio test the series

4. Consider the series ∑
∞
n=1

n3√
n+2 . Here an =

n3√
n+2 , and

∣
an+1
an
∣ =
(n + 1)3(

√
n + 2)

(
√
n + 1 + 2)n3

=
n7/2(1 + 1

n)
3(1 + 2√

n
)

n7/2(
√

1 + 1
n +

2
n)

=
(1 + 1

n)
3(1 + 2√

n
)

√

1 + 1
n +

2
n

→
(1 + 0)3(1 + 0)
√

1 + 0 + 0
= 1

The root test is inconclusive. However, note that we could apply the Limit Comparison Test
(for example) and compare with the divergent series ∑n7/2 (it’s a p-series, with p = −7/2) to
deduce that the series ∑an is divergent.

Check your understanding
Use the Ratio Test to determine convergence or divergence of the following series. If the Ratio
Test is inconclusive how might you determine convergence?

1. ∑
∞
n=1

n
8n

2. ∑
∞
n=1

n+5√
n5+2

3. ∑
∞
n=1

10n

n10
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A companion to the Ratio Test is the following:

Root Test

Let ∑an be a series, where an ≠ 0.

(i) If limn→∞ n
√
∣an∣ = L < 1, then the series ∑an is (absolutely) convergent.

(ii) If limn→∞ n
√
∣an∣ = L > 1, or limn→∞ n

√
∣an∣ = L = +∞, then the series ∑an

is divergent.

(iii) If limn→∞ n
√
∣an∣ = L = 1, then the test is inconclusive: we have gained

no additional information on the divergence/convergence of ∑an.

To effectively apply the Root Test we need the following rules:

Root Rules

1. limn→∞
n
√
C = 1, for any constant C > 0.

2. limn→∞
n
√
np = 1, for any p > 0.

3. limn→∞ n
√
f(n) = 1, for any nonzero polynomial f(n) with positive

coefficients.

4. limn→∞
n
√
n! = +∞.

Example:

1. Consider the geometric series ∑
∞
n=10 (

3n

5n
). Then, an =

3n

5n and

n

√

∣
3n

5n
∣ = ((

3

5
)
n

)

1
n

=
3

5
→

3

5
< 1 as n→∞.

Hence, by the root test, the series is convergent. Of course, we knew this already because
this series is a geometric series with r = 3

5 .

2. Consider the series ∑
∞
n=1

(−2)nn3

3n . Then, an =
(−2)nn3

3n and

n
√
∣an∣ =

n

√
2nn3

3n
= (

2nn3

3n
)

1
n

=
2

3

n
√
n3 →

2

3
⋅ 1 =

2

3
< 1 as n→∞ by the Root Rules.

Hence, by the root test the series is convergent.

Check your understanding
Use the Root Test to determine convergence of the series above.
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1. ∑
∞
n=1

n
8n

2. ∑
∞
n=1

n+5√
n5+2

3. ∑
∞
n=1

10n

n10

Remark: If the Ratio Test can be used to determine convergence of a series ∑an (i.e. the test
is not inconclusive) then the series will also pass the Root Test (although it may be tricky to
find the limit). However, there exists series ∑an for which the Ratio Test can’t be applied or is
inconclusive but the Root Test is conclusive: an example is the series

∞
∑
n=1

an where an =

⎧⎪⎪
⎨
⎪⎪⎩

1
2n , n odd
4
2n , n even

This series is a rearrangement of the (absolutely convergent) geometric series ∑
∞
n=1

1
2n

∞
∑
n=1

an =
1

2
+ 1 +

1

8
+

1

4
+

1

32
+

1

16
+ . . .

Then,

an+1
an

=

⎧⎪⎪
⎨
⎪⎪⎩

2, n odd

1/8 n even

and this sequence does not have a limit. However, n
√
an = 1/2, for any n, so the Root Test shows

this series is convergent.
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Appendix
Let ∑

∞
n=1 an be a series, an ≠ 0.

1. The idea behind the Ratio Test is as follows: suppose that limn→∞ ∣an+1an
∣ = L. Then, as

n→∞, the ratios ∣an+1an
∣ are ‘sufficiently close’ to L. Now, for any k < n we can write

an = ak ⋅
ak+1
ak

⋅
ak+2
ak+1

⋅ ⋯ ⋅
an−1
an−2

⋅
an
an−1

and we can find a constant c so that ∣an∣ can be compared to cLn, for n sufficiently large.
Then, we deduce the behaviour of the series ∑ ∣an∣ by comparing it with the (geometric)
series ∑ cLn.

2. The idea behind the Root Test is as follows: if limn→∞ n
√
∣an∣ = L then, as n→∞, the terms

of the sequence ( n
√
∣an∣) are ‘sufficiently close to’ L. This means that ∣an∣ can be compared

(in a suitable sense) to Ln. Then, the behaviour of ∑an is similar to the behaviour of the
geometric series ∑Ln.
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