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Convergence Tests for Series II

Today we introduce the Harmonic Series and begin our investigation into com-
parison tests for series.

Recall the following

Test for divergence

Let ∑
∞
n=1 an be a series. If (an) is divergent or (an) is

convergent and liman ≠ 0 then ∑
∞
n=1 an is divergent.

A common mistake is to assume that the Test for Divergence states the following: if
(an) is convergent and liman = 0 then ∑

∞
n=1 an is convergent. This statement seems

like it could be true but the following important example tells otherwise.

The Harmonic Series:

Definition: The series ∞
∑
n=1

1

n

is called the Harmonic Series.
Observe that limn→∞ 1

n = 0. We investigate the behaviour of the Harmonic Series.
Denote the partial sums of the Harmonic Series by Hm, m = 1,2,3, . . ..

Spot the pattern!
Consider the following inequalities
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1. In words, complete the following formulae describing the patterns observed
above:
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2. Spot the pattern!
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3. Spot the general pattern! Complete the following statement: for each
k = 1,2,3, . . .,
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4. Using 1,2 above explain why
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5. Spot the general pattern! Complete the following statement: for each
k = 1,2,3, . . .,

H2k+1 = 1 +
1
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6. Complete the following statement

The sequence of partial sums (Hm) associated to the Harmonic Series ∑
∞
n=1

1
n is

. Hence, the Harmonic Series ∑
∞
n=1

1
n is .

Remark: You will work through another proof of this result in your Homework.

The Direct Comparison Test (DCT)
In this paragraph we will be concerned with series ∑an associated to sequences (an)
consisting of positive terms i.e. for each n = 1,2,3, . . ., we require an > 0.

Check your understanding

Consider the series∑
∞
n=1

1
5n+3 . Let (sm) be the sequence of partial terms associated

to this series. We are going to investigate the behaviour of this series by comparing
it with the known behaviour of the (convergent) geometric series ∑

∞
n=1

1
5n .

1. Recall that sm is the sum of the first m terms of the series. For each m =

1,2,3, . . ., explain carefully why sm+1 > sm. Deduce that (sm) is an increasing
sequence.
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2. Consider the geometric series ∑
∞
n=1

1
5n . Let (tm) be the associated sequence

of partial sums. Explain why (tm) is convergent and determine the limit L.
Explain why tm < L, for m = 1,2,3, . . ..

3. Complete the following statement:

For each n = 1,2,3, . . ., we have 5n < 5n + 3 so that 1
5n+3 < .

Hence, for each m = 1,2,3, . . ., sm < tm <

4. Using what you have discovered in the previous problems, explain carefully
why (sm) is convergent. Deduce that the series ∑

∞
n=1

1
5n+3 is convergent. Can

you determine its limit?

What you have shown in the previous exercise is the idea underlying the proof of
the following result.

Direct Comparison Test (DCT)

Let ∑an and ∑ bn be series having positive terms.

1) Suppose that, for each n, an ≤ bn, and ∑ bn is convergent. Then, ∑an is
convergent.

2) Suppose that, for each n, an ≥ bn, and ∑ bn is divergent. Then, ∑an is
divergent.

The Direct Comparison Test has the following immediate consequences: in Home-
work you will show that the series ∑

∞
n=1

1
n2 is convergent; second, we’ve seen that the

Harmonic Series ∑ 1
n is divergent.
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p-series Test

Consider the series ∑
∞
n=1

1
np , where p is a real number. Then,

1. ∑
∞
n=1

1
np is convergent if p ≥ 2.

2. ∑
∞
n=1

1
np is divergent if p ≤ 1.

Proof:

1. If p ≥ 2 then, for each n = 1,2,3, . . .,

np ≥ n2 Ô⇒ 0 <
1

np
≤

1

n2

Hence, since ∑
∞
n=1

1
n2 is convergent, we can apply DCT to show that ∑

∞
n=1

1
np is

also convergent.

2. If p ≤ 1 then, for each n = 1,2,3, . . .,

np ≤ n Ô⇒
1

n
≤

1

np

Hence, since ∑
∞
n=1

1
n is divergent, we can apply DCT to show that ∑

∞
n=1

1
np is

also divergent.

Example:

1. Consider the series ∑
∞
n=1

1
n3+n+1 . We are going to compare this series with the

convergent series ∑
∞
n=1

1
n3 .

For n = 1,2,3, . . ., we have

n3 < n3 + n + 1 Ô⇒
1

n3 + n + 1
<

1

n3

Since the series ∑
∞
n=1

1
n3 is convergent, by the p-series test, the series ∑

∞
n=1

1
n3+n+1

is convergent, by DCT.

2. Consider the series ∞
∑
n=1

1

2n − 1
= 1 +
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+

1
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7
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We rewrite the summand 1
2n−1 =

1
2 (

1
n−1/2). Now, for each n = 1,2,3, . . .

n − 1/2 < n Ô⇒
1

n
<

1

n − 1/2

Since the series ∑
∞
n=1

1
n is divergent (p-series with p = 1), the series ∑

∞
n=1

1
n−1/2 is

divergent, by DCT. Hence, the series 1
2 ∑

∞
n=1

1
n−1/2 = ∑

∞
n=1

1
2n−1 is divergent.
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