

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 26 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.2.

- Calculus, Spivak, 3rd Ed.: Section 22.

- AP Calculus BC, Khan Academy: Partial sums, infinite geometric series.

Keywords: convergence tests for series, telescoping series, test for divergent series.

Convergence Tests for Series I

Today we investigate how to determine convergence of a type of series known as a telescoping series.

Recall: given a sequence (a_n) we associate the series $\sum_{n=1}^{\infty} a_n$. The series $\sum_{n=1}^{\infty} a_n$ is convergent if its associated sequence of partial sums (s_m) , where

$$s_m = a_1 + \ldots + a_m,$$

is convergent. In this case, the convergent series is assigned the limit of (s_m) ,

$$\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} s_m$$

Otherwise, the series $\sum_{n=1}^{\infty} a_n$ is divergent.

We saw on February 22 how to determine convergence of geometric series: these are series of the form $\sum_{n=1}^{\infty} r^n$. Recall that, when $r \neq 1$, we were able to find a nice formula for the m^{th} partial sum s_m of a geometric series

$$s_m = \frac{r(1-r^{m+1})}{1-r}$$

We can use the Geometric Progression Theorem to determine convergence of the right hand side: since $\lim_{m\to\infty} r^{m+1} = 0$, whenever |r| < 1, we found

$$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}, \quad \text{whenever } |r| < 1.$$

Geometric Series Theorem

- Let |r| < 1. Then, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent and $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$.
- Let |r| > 1. Then, the geometric series $\sum_{n=1}^{\infty} r^n$ is divergent.

In general it can be a tricky task to determine the convergence of a series using the sequence of partial sums: it is usually very difficult to find a nice formula for s_m . However, there are some exceptions which we will now investigate.

Example:

1. Consider the series $\sum_{n=1}^{\infty} 1$. Then, the m^{th} partial sum is

$$s_m = 1 + 1 + \ldots + 1 = m$$

Since the sequence $(s_m) = (1, 2, 3, 4, ...)$ is unbounded, the sequence (s_m) is ________. Hence, the series $\sum_{n=1}^{\infty}$ is ________.

2. Consider the series $\sum_{n=1}^{\infty} (-1)^n$. The sequence of partial sums (s_m) associated to this series are

$$s_1 = -1$$
, $s_2 = -1 + 1 = 0$, $s_3 = -1 + 1 - 1 = -1$, $s_4 = -1 + 1 - 1 + 1 = 0$, ...

In general,

$$s_m = \begin{cases} -1, & \text{if } m \text{ odd,} \\ 0, & \text{if } m \text{ even.} \end{cases}$$

The sequence (s_m) does not converge so that series $\sum_{n=1}^{\infty} (-1)^n$ is divergent.

CHECK YOUR UNDERSTANDING

Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

1. Determine the first five partial sums s_1 , s_2 , s_3 , s_4 , s_5 as a fraction in simplest terms.

2. What do you expect to be the expression for s_m , the m^{th} partial sum?

3. Based on your guess above, is the sequence of partial sums (s_m) convergent or divergent? If convergent, what does this tell us about $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$?; if divergent, give a careful justification.

Conneigent;
$$\sum_{n=1}^{\infty} \frac{1}{h(n+1)} = \lim_{n \to \infty} \frac{1}{h(n+1)}$$

Remark: The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is an example of a telescoping series: the partial sums s_m can be shown to be a difference of two similar sums with successive cancellation.

Example:

1. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Note that we can rewrite the summand as

$$\frac{1}{n(n+1)} = \frac{1}{h} - \frac{1}{h+1}$$

Then, the associated partial sums are

$$s_{m} = \sum_{n=1}^{m} \frac{1}{n(n+1)} = \sum_{n=1}^{m} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{m} \frac{1}{n} - \sum_{n=1}^{m} \frac{1}{n+1}$$

Expaning the sigma notation gives

$$S_m = \underbrace{(1 + \underbrace{1 + 1 + 1}_{m+1})}_{m+1} - \underbrace{(1 + \underbrace{1 + 1 + 1}_{m+1})}_{m+1} - \underbrace{1 - \underbrace{1 - 1}_{m+1}}_{m+1}$$

Hence, since $\lim_{m\to\infty} s_m = \underline{\hspace{1cm}}$ we obtain

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \underline{\hspace{1cm}}$$

2. This is a slightly more elaborate example. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$$

Note that we can rewrite the summand as

$$\frac{1}{3}\left(\frac{1}{3n-1}-\frac{1}{3n+2}\right)$$

Then, the partial sums are

$$s_m = \sum_{n=1}^m \frac{1}{(3n-1)(3n+2)} = \sum_{n=1}^m \frac{1}{3} \left(\frac{1}{3n-1} - \frac{1}{3n+2} \right) = \frac{1}{3} \sum_{n=1}^m \frac{1}{3n-1} - \frac{1}{3} \sum_{n=1}^m \frac{1}{3n+2}$$

Expanding the sigma notation gives

$$s_m = \frac{1}{3} \left(\frac{1}{2} + \frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3m-1} \right) - \frac{1}{3} \left(\frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3(m-1)+2} + \frac{1}{3m+2} \right)$$
$$= \frac{1}{3} \left(\frac{1}{2} - \frac{1}{3m+2} \right)$$

Hence, since $\lim_{m\to\infty} s_m = \lim_{m\to\infty} \frac{1}{3} \left(\frac{1}{2} - \frac{1}{3m+2} \right) = \frac{1}{6}$, we obtain

$$\sum_{n=1}^{\infty} \frac{1}{(3m-1)(3m+2)} = \frac{1}{6}$$

In the next few lectures we will develop a collection of tests to show that a series is convergent. First, we give a straightforward test for divergent sequences.

We make the following observation: let (s_m) be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_n$. Then, we can recover the sequence (a_n) from the sequence of partial sums by noting that

3

$$a_1 = s_1,$$

 $a_2 = (a_1 + a_2) - a_1 = s_2 - s_1,$
 $a_3 = (a_1 + a_2 + a_3) - (a_1 + a_2) = s_3 - s_2,$
:

Hence, for each $n = 1, 2, 3, \ldots$,

$$a_{n+1} = (a_1 + a_2 + \ldots + a_{n+1}) - (a_1 + \ldots + a_n) = s_{n+1} - s_n.$$

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES!

1. Let (b_n) be a convergent sequence, $\lim_{n\to\infty} b_n = L$. Define a new sequence

$$(c_n) = (b_2, b_3, b_4, \ldots),$$

so that $c_1 = b_2$, $c_2 = b_3$ etc. Complete the statement:

$$(c_n)$$
 is convergent and $\lim_{n\to\infty} c_n = \underline{L}$

- 2. Let (s_m) be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_n$. Assume that $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (a) Using the previous exercise, explain carefully why $\lim_{n\to\infty} (s_{n+1} s_n) = 0$.

(b) Complete the following statement:

If the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent then (a_n) is convergent and $\lim_{n\to\infty} a_n =$ _______.

Considering the contrapositive statement¹ we obtain the following

Test for divergence

Let $\sum_{n=1}^{\infty} a_n$ be a series. If (a_n) is divergent or $\lim a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

Example: Consider the series

$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{5n^2 + 6n + 1}.$$

This is the series associated to the sequence (a_n) , where $a_n = \frac{2n^2+1}{5n^2+6n+1}$. Since

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{2n^2+1}{5n^2+6n+1} = \frac{2}{5} \neq 0,$$

the series $\sum_{n=1}^{\infty} \frac{2n^2+1}{5n^2+6n+1}$ does not converge, by the test for divergence.

¹Given a statement of the form if P then Q, the contrapositive statement is the logically equivalent statement if 'not Q' then 'not P'. For example, the statement 'if you are a Vermonter then you are American' is logically equivalent to 'if you are not an American then you are not a Vermonter'.