Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 26 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.2.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Partial sums, infinite geometric series.

KEYWORDS: convergence tests for series, telescoping series, test for divergent series.

Convergence Tests for Series I

Today we investigate how to determine convergence of a type of series known as a telescoping series.
Recall: given a sequence $\left(a_{n}\right)$ we associate the series $\sum_{n=1}^{\infty} a_{n}$. The series $\sum_{n=1}^{\infty} a_{n}$ is convergent if its associated sequence of partial sums $\left(s_{m}\right)$, where

$$
s_{m}=a_{1}+\ldots+a_{m},
$$

is convergent. In this case, the convergent series is assigned the limit of $\left(s_{m}\right)$,

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{m \rightarrow \infty} s_{m}
$$

Otherwise, the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
We saw on February 22 how to determine convergence of geometric series: these are series of the form $\sum_{n=1}^{\infty} r^{n}$. Recall that, when $r \neq 1$, we were able to find a nice formula for the $m^{t h}$ partial sum s_{m} of a geometric series

$$
s_{m}=\frac{r\left(1-r^{m+1}\right)}{1-r}
$$

We can use the Geometric Progression Theorem to determine convergence of the right hand side: since $\lim _{m \rightarrow \infty} r^{m+1}=0$, whenever $|r|<1$, we found

$$
\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \quad \text { whenever }|r|<1
$$

Geometric Series Theorem

- Let $|r|<1$. Then, the geometric series $\sum_{n=1}^{\infty} r^{n}$ is convergent and $\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}$.
- Let $|r|>1$. Then, the geometric series $\sum_{n=1}^{\infty} r^{n}$ is divergent.

In general it can be a tricky task to determine the convergence of a series using the sequence of partial sums: it is usually very difficult to find a nice formula for s_{m}. However, there are some exceptions which we will now investigate.

Example:

1. Consider the series $\sum_{n=1}^{\infty} 1$. Then, the $m^{\text {th }}$ partial sum is

$$
s_{m}=1+1+\ldots+1=m
$$

Since the sequence $\left(s_{m}\right)=(1,2,3,4, \ldots)$ is unbounded, the sequence $\left(s_{m}\right)$ is
\qquad . Hence, the series $\sum_{n=1}^{\infty}$ is \qquad .
2. Consider the series $\sum_{n=1}^{\infty}(-1)^{n}$. The sequence of partial sums $\left(s_{m}\right)$ associated to this series are

$$
s_{1}=-1, \quad s_{2}=-1+1=0, \quad s_{3}=-1+1-1=-1, \quad s_{4}=-1+1-1+1=0, \ldots
$$

In general,

$$
s_{m}= \begin{cases}-1, & \text { if } m \text { odd } \\ 0, & \text { if } m \text { even }\end{cases}
$$

The sequence $\left(s_{m}\right)$ does not converge so that series $\sum_{n=1}^{\infty}(-1)^{n}$ is divergent.

Check your understanding

Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

1. Determine the first five partial sums $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ as a fraction in simplest terms.
2. What do you expect to be the expression for s_{m}, the $m^{\text {th }}$ partial sum?
3. Based on your guess above, is the sequence of partial sums $\left(s_{m}\right)$ convergent or divergent? If convergent, what does this tell us about $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$?; if divergent, give a careful justification.

Remark: The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is an example of a telescoping series: the partial sums s_{m} can be shown to be a difference of two similar sums with successive cancellation.
Example:

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

Note that we can rewrite the summand as

$$
\frac{1}{n(n+1)}=
$$

\qquad
Then, the associated partial sums are

$$
s_{m}=\sum_{n=1}^{m} \frac{1}{n(n+1)}=\sum_{n=1}^{m}=
$$

\qquad
Expaning the sigma notation gives

$$
s_{m}=
$$

\qquad $=$ \qquad
Hence, since $\lim _{m \rightarrow \infty} s_{m}=$ \qquad we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=
$$

\qquad
2. This is a slightly more elaborate example. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{(3 n-1)(3 n+2)}
$$

Note that we can rewrite the summand as

$$
\frac{1}{3}\left(\frac{1}{3 n-1}-\frac{1}{3 n+2}\right)
$$

Then, the partial sums are

$$
s_{m}=\sum_{n=1}^{m} \frac{1}{(3 n-1)(3 n+2)}=\sum_{n=1}^{m} \frac{1}{3}\left(\frac{1}{3 n-1}-\frac{1}{3 n+2}\right)=\frac{1}{3} \sum_{n=1}^{m} \frac{1}{3 n-1}-\frac{1}{3} \sum_{n=1}^{m} \frac{1}{3 n+2}
$$

Expanding the sigma notation gives

$$
\begin{gathered}
s_{m}=\frac{1}{3}\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{8}+\ldots+\frac{1}{3 m-1}\right)-\frac{1}{3}\left(\frac{1}{5}+\frac{1}{8}+\ldots+\frac{1}{3(m-1)+2}+\frac{1}{3 m+2}\right) \\
=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3 m+2}\right)
\end{gathered}
$$

Hence, since $\lim _{m \rightarrow \infty} s_{m}=\lim _{m \rightarrow \infty} \frac{1}{3}\left(\frac{1}{2}-\frac{1}{3 m+2}\right)=\frac{1}{6}$, we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{(3 m-1)(3 m+2)}=\frac{1}{6}
$$

In the next few lectures we will develop a collection of tests to show that a series is convergent. First, we give a straightforward test for divergent sequences.

We make the following observation: let $\left(s_{m}\right)$ be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_{n}$. Then, we can recover the sequence $\left(a_{n}\right)$ from the sequence of partial sums by noting that

$$
\begin{aligned}
& a_{1}=s_{1}, \\
& a_{2}=\left(a_{1}+a_{2}\right)-a_{1}=s_{2}-s_{1}, \\
& a_{3}=\left(a_{1}+a_{2}+a_{3}\right)-\left(a_{1}+a_{2}\right)=s_{3}-s_{2}, \\
& \quad \vdots
\end{aligned}
$$

Hence, for each $n=1,2,3, \ldots$,

$$
a_{n+1}=\left(a_{1}+a_{2}+\ldots+a_{n+1}\right)-\left(a_{1}+\ldots+a_{n}\right)=s_{n+1}-s_{n} .
$$

Mathematical workout - Flex those muscles!

1. Let $\left(b_{n}\right)$ be a convergent sequence, $\lim _{n \rightarrow \infty} b_{n}=L$. Define a new sequence

$$
\left(c_{n}\right)=\left(b_{2}, b_{3}, b_{4}, \ldots\right),
$$

so that $c_{1}=b_{2}, c_{2}=b_{3}$ etc. Complete the statement:
$\left(c_{n}\right)$ is \qquad and $\lim _{n \rightarrow \infty} c_{n}=$ \qquad .
2. Let $\left(s_{m}\right)$ be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_{n}$. Assume that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(a) Using the previous exercise, explain carefully why $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right)=0$.
(b) Complete the following statement:

$$
\begin{aligned}
& \text { If the series } \sum_{n=1}^{\infty} a_{n} \text { is convergent then }\left(a_{n}\right) \text { is convergent and } \\
& \qquad \lim _{n \rightarrow \infty} a_{n}=
\end{aligned}
$$

Considering the contrapositive statemen $\dagger 1$ we obtain the following

Test for divergence

Let $\sum_{n=1}^{\infty} a_{n}$ be a series. If $\left(a_{n}\right)$ is divergent or $\lim a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Example: Consider the series

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}
$$

This is the series associated to the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{2 n^{2}+1}{5 n^{2}+6 n+1}$. Since

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}=\frac{2}{5} \neq 0,
$$

the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}$ does not converge, by the test for divergence.

[^0]
[^0]: ${ }^{1}$ Given a statement of the form if P then Q, the contrapositive statement is the logically equivalent statement if 'not Q ' then 'not P '. For example, the statement 'if you are a Vermonter then you are American' is logically equivalent to 'if you are not an American then you are not a Vermonter'.

