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Convergence Tests for Series I

Today we investigate how to determine convergence of a type of series known as
a telescoping series.

Recall: given a sequence (an) we associate the series ∑
∞
n=1 an. The series ∑

∞
n=1 an

is convergent if its associated sequence of partial sums (sm), where

sm = a1 + . . . + am,

is convergent. In this case, the convergent series is assigned the limit of (sm),

∞
∑

n=1
an = lim

m→∞ sm

Otherwise, the series ∑
∞
n=1 an is divergent.

We saw on February 22 how to determine convergence of geometric series:
these are series of the form ∑

∞
n=1 rn. Recall that, when r ≠ 1, we were able to find a

nice formula for the mth partial sum sm of a geometric series

sm =

r(1 − rm+1
)

1 − r

We can use the Geometric Progression Theorem to determine convergence of the
right hand side: since limm→∞ rm+1

= 0, whenever ∣r∣ < 1, we found

∞
∑

n=1
rn =

r

1 − r
, whenever ∣r∣ < 1.

Geometric Series Theorem

● Let ∣r∣ < 1. Then, the geometric series ∑
∞
n=1 rn is convergent and ∑

∞
n=1 rn =

r
1−r .

● Let ∣r∣ > 1. Then, the geometric series ∑
∞
n=1 rn is divergent.

In general it can be a tricky task to determine the convergence of a series using the
sequence of partial sums: it is usually very difficult to find a nice formula for sm.
However, there are some exceptions which we will now investigate.
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Example:

1. Consider the series ∑
∞
n=1 1. Then, the mth partial sum is

sm = 1 + 1 + . . . + 1 =m

Since the sequence (sm) = (1,2,3,4, . . .) is unbounded, the sequence (sm) is
. Hence, the series ∑

∞
n=1 is .

2. Consider the series ∑
∞
n=1(−1)n. The sequence of partial sums (sm) associated

to this series are

s1 = −1, s2 = −1 + 1 = 0, s3 = −1 + 1 − 1 = −1, s4 = −1 + 1 − 1 + 1 = 0, . . .

In general,

sm =

⎧
⎪⎪
⎨
⎪⎪
⎩

−1, if m odd,

0, if m even.

The sequence (sm) does not converge so that series ∑
∞
n=1(−1)n is divergent.

Check your understanding
Consider the series ∞

∑

n=1

1

n(n + 1)
.

1. Determine the first five partial sums s1, s2, s3, s4, s5 as a fraction in simplest
terms.

2. What do you expect to be the expression for sm, the mth partial sum?

3. Based on your guess above, is the sequence of partial sums (sm) convergent or
divergent? If convergent, what does this tell us about ∑

∞
n=1

1
n(n+1)?; if divergent,

give a careful justification.

Remark: The series ∑
∞
n=1

1
n(n+1) is an example of a telescoping series: the par-

tial sums sm can be shown to be a difference of two similar sums with successive
cancellation.
Example:
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1. Consider the series ∞
∑

n=1

1

n(n + 1)

Note that we can rewrite the summand as

1

n(n + 1)
=

Then, the associated partial sums are

sm =

m

∑

n=1

1

n(n + 1)
=

m

∑

n=1
=

Expaning the sigma notation gives

sm = =

Hence, since limm→∞ sm = we obtain

∞
∑

n=1

1

n(n + 1)
=

2. This is a slightly more elaborate example. Consider the series

∞
∑

n=1

1

(3n − 1)(3n + 2)

Note that we can rewrite the summand as

1

3
(

1

3n − 1
−

1

3n + 2
)

Then, the partial sums are

sm =

m

∑

n=1

1

(3n − 1)(3n + 2)
=

m

∑

n=1

1

3
(

1

3n − 1
−

1

3n + 2
) =

1

3

m

∑

n=1

1

3n − 1
−

1

3

m

∑

n=1

1

3n + 2

Expanding the sigma notation gives

sm =

1

3
(

1

2
+

1

5
+

1

8
+ . . . +

1

3m − 1
) −

1

3
(

1

5
+

1

8
+ . . . +

1

3(m − 1) + 2
+

1

3m + 2
)

=

1

3
(

1

2
−

1

3m + 2
)

Hence, since limm→∞ sm = limm→∞ 1
3
(
1
2 −

1
3m+2) =

1
6 , we obtain

∞
∑

n=1

1

(3m − 1)(3m + 2)
=

1

6

In the next few lectures we will develop a collection of tests to show that a series is
convergent. First, we give a straightforward test for divergent sequences.

We make the following observation: let (sm) be the sequence of partial sums
associated to the series ∑

∞
n=1 an. Then, we can recover the sequence (an) from the

sequence of partial sums by noting that

3



a1 = s1,
a2 = (a1 + a2) − a1 = s2 − s1,
a3 = (a1 + a2 + a3) − (a1 + a2) = s3 − s2,
⋮

Hence, for each n = 1,2,3, . . .,

an+1 = (a1 + a2 + . . . + an+1) − (a1 + . . . + an) = sn+1 − sn.

Mathematical workout - flex those muscles!

1. Let (bn) be a convergent sequence, limn→∞ bn = L. Define a new sequence

(cn) = (b2, b3, b4, . . .),

so that c1 = b2, c2 = b3 etc. Complete the statement:

(cn) is and limn→∞ cn = .

2. Let (sm) be the sequence of partial sums associated to the series ∑
∞
n=1 an.

Assume that ∑
∞
n=1 an is convergent.

(a) Using the previous exercise, explain carefully why limn→∞(sn+1 − sn) = 0.

(b) Complete the following statement:

If the series ∑
∞
n=1 an is convergent then (an) is convergent and

limn→∞ an = .

Considering the contrapositive statement1 we obtain the following

Test for divergence

Let ∑
∞
n=1 an be a series. If (an) is divergent or

liman ≠ 0 then ∑
∞
n=1 an is divergent.

Example: Consider the series

∞
∑

n=1

2n2
+ 1

5n2
+ 6n + 1

.

This is the series associated to the sequence (an), where an =
2n2+1

5n2+6n+1 . Since

lim
n→∞an = lim

n→∞
2n2

+ 1

5n2
+ 6n + 1

=

2

5
≠ 0,

the series ∑
∞
n=1

2n2+1
5n2+6n+1 does not converge, by the test for divergence.

1Given a statement of the form if P then Q, the contrapositive statement is the logically equiva-
lent statement if ‘not Q’ then ‘not P ’. For example, the statement ‘if you are a Vermonter then you
are American’ is logically equivalent to ‘if you are not an American then you are not a Vermonter’.
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