

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

FEBRUARY 26 LECTURE

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.2.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Partial sums, infinite geometric series.

KEYWORDS: convergence tests for series, telescoping series, test for divergent series.

CONVERGENCE TESTS FOR SERIES I

Today we investigate how to determine convergence of a type of series known as a **telescoping series**.

Recall: given a sequence (a_n) we associate the **series** $\sum_{n=1}^{\infty} a_n$. The series $\sum_{n=1}^{\infty} a_n$ is **convergent** if its associated sequence of partial sums (s_m) , where

$$s_m = a_1 + \ldots + a_m,$$

is convergent. In this case, the convergent series is assigned the limit of (s_m) ,

$$\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} s_m$$

Otherwise, the series $\sum_{n=1}^{\infty} a_n$ is **divergent**.

We saw on February 22 how to determine convergence of **geometric series**: these are series of the form $\sum_{n=1}^{\infty} r^n$. Recall that, when $r \neq 1$, we were able to find a nice formula for the m^{th} partial sum s_m of a geometric series

$$s_m = \frac{r(1 - r^{m+1})}{1 - r}$$

We can use the Geometric Progression Theorem to determine convergence of the right hand side: since $\lim_{m\to\infty} r^{m+1} = 0$, whenever |r| < 1, we found

$$\sum_{n=1}^{\infty}r^n=\frac{r}{1-r}, \quad \text{whenever } |r|<1.$$

Geometric Series Theorem

- Let |r| < 1. Then, the geometric series $\sum_{n=1}^{\infty} r^n$ is convergent and $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$.
- Let |r| > 1. Then, the geometric series $\sum_{n=1}^{\infty} r^n$ is divergent.

In general it can be a tricky task to determine the convergence of a series using the sequence of partial sums: it is usually very difficult to find a nice formula for s_m . However, there are some exceptions which we will now investigate.

Example:

1. Consider the series $\sum_{n=1}^{\infty} 1$. Then, the m^{th} partial sum is

$$s_m = 1 + 1 + \ldots + 1 = m$$

Since the sequence $(s_m) = (1, 2, 3, 4, ...)$ is unbounded, the sequence (s_m) is _____. Hence, the series $\sum_{n=1}^{\infty}$ is _____.

2. Consider the series $\sum_{n=1}^{\infty} (-1)^n$. The sequence of partial sums (s_m) associated to this series are

 $s_1 = -1$, $s_2 = -1 + 1 = 0$, $s_3 = -1 + 1 - 1 = -1$, $s_4 = -1 + 1 - 1 + 1 = 0$,...

In general,

$$s_m = \begin{cases} -1, & \text{if } m \text{ odd,} \\ 0, & \text{if } m \text{ even.} \end{cases}$$

The sequence (s_m) does not converge so that series $\sum_{n=1}^{\infty} (-1)^n$ is divergent.

CHECK YOUR UNDERSTANDING Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

1. Determine the first five partial sums s_1 , s_2 , s_3 , s_4 , s_5 as a fraction in simplest terms.

- 2. What do you expect to be the expression for s_m , the m^{th} partial sum?
- 3. Based on your guess above, is the sequence of partial sums (s_m) convergent or divergent? If convergent, what does this tell us about $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$?; if divergent, give a careful justification.

Remark: The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is an example of a **telescoping series**: the partial sums s_m can be shown to be a difference of two similar sums with successive cancellation.

Example:

1. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Note that we can rewrite the summand as

$$\frac{1}{n(n+1)} = \underline{\qquad}$$

Then, the associated partial sums are

$$s_m = \sum_{n=1}^m \frac{1}{n(n+1)} = \sum_{n=1}^m \frac{1}{n(n+1)} = \frac{1}{n(n+1)} = \frac{1}{n(n+1)}$$

Expaning the sigma notation gives

Hence, since $\lim_{m\to\infty} s_m =$ _____ we obtain

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \underline{\qquad}$$

2. This is a slightly more elaborate example. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$$

Note that we can rewrite the summand as

$$\frac{1}{3}\left(\frac{1}{3n-1} - \frac{1}{3n+2}\right)$$

Then, the partial sums are

$$s_m = \sum_{n=1}^m \frac{1}{(3n-1)(3n+2)} = \sum_{n=1}^m \frac{1}{3} \left(\frac{1}{3n-1} - \frac{1}{3n+2} \right) = \frac{1}{3} \sum_{n=1}^m \frac{1}{3n-1} - \frac{1}{3} \sum_{n=1}^m \frac{1}{3n+2}$$

Expanding the sigma notation gives

$$s_m = \frac{1}{3} \left(\frac{1}{2} + \frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3m-1} \right) - \frac{1}{3} \left(\frac{1}{5} + \frac{1}{8} + \dots + \frac{1}{3(m-1)+2} + \frac{1}{3m+2} \right)$$
$$= \frac{1}{3} \left(\frac{1}{2} - \frac{1}{3m+2} \right)$$

Hence, since $\lim_{m\to\infty} s_m = \lim_{m\to\infty} \frac{1}{3} \left(\frac{1}{2} - \frac{1}{3m+2} \right) = \frac{1}{6}$, we obtain

$$\sum_{n=1}^{\infty} \frac{1}{(3m-1)(3m+2)} = \frac{1}{6}$$

In the next few lectures we will develop a collection of tests to show that a series is convergent. First, we give a straightforward **test for divergent sequences**.

We make the following observation: let (s_m) be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_n$. Then, we can recover the sequence (a_n) from the sequence of partial sums by noting that $a_{1} = s_{1},$ $a_{2} = (a_{1} + a_{2}) - a_{1} = s_{2} - s_{1},$ $a_{3} = (a_{1} + a_{2} + a_{3}) - (a_{1} + a_{2}) = s_{3} - s_{2},$ \vdots

Hence, for each n = 1, 2, 3, ...,

$$a_{n+1} = (a_1 + a_2 + \ldots + a_{n+1}) - (a_1 + \ldots + a_n) = s_{n+1} - s_n.$$

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES!

1. Let (b_n) be a convergent sequence, $\lim_{n\to\infty} b_n = L$. Define a new sequence

$$(c_n)=(b_2,b_3,b_4,\ldots),$$

so that $c_1 = b_2$, $c_2 = b_3$ etc. Complete the statement:

$$(c_n)$$
 is _____ and $\lim_{n \to \infty} c_n = ____.$

- 2. Let (s_m) be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_n$. Assume that $\sum_{n=1}^{\infty} a_n$ is convergent.
 - (a) Using the previous exercise, explain carefully why $\lim_{n\to\infty} (s_{n+1} s_n) = 0$.
 - (b) Complete the following statement:

If the series $\sum_{n=1}^{\infty} a_n$ is convergent then (a_n) is convergent and $\lim_{n\to\infty} a_n =$ _____.

Considering the contrapositive statement¹ we obtain the following

Test for divergence

Let $\sum_{n=1}^{\infty} a_n$ be a series. If (a_n) is divergent or $\lim a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ is divergent.

Example: Consider the series

$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{5n^2 + 6n + 1}$$

This is the series associated to the sequence (a_n) , where $a_n = \frac{2n^2+1}{5n^2+6n+1}$. Since

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n^2 + 1}{5n^2 + 6n + 1} = \frac{2}{5} \neq 0,$$

the series $\sum_{n=1}^{\infty} \frac{2n^2+1}{5n^2+6n+1}$ does not converge, by the test for divergence.

¹Given a statement of the form *if* P then Q, the contrapositive statement is the logically equivalent statement *if 'not* Q' then 'not P'. For example, the statement '*if you are a Vermonter then you are American*' is logically equivalent to '*if you are not an American then you are not a Vermonter*'.