

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 22 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1-11.2.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Partial sums, infinite geometric series.

KEYWORDS: geometric progression, series, partial sums, convergent series, divergent series, geometric series.

SEQUENCES: GEOMETRIC PROGRESSIONS. INTRODUCTION TO SERIES

Today we determine convergence of a class of sequences known as geometric progressions. We will also take our first steps into the realm of series.

First we recall a result from February 21 Homework.

Test for Divergent Sequences:

Let (a_n) be a sequence. If (a_n) is unbounded then (a_n) is divergent.

Geometric progressions:

Suppose that $0 \le x \le 1$. Consider the sequence (a_n) , where $a_n = x^n$. Such a sequence is called a **geometric progression**. We say in February 21 Lecture that (a_n) is convergent and $\lim_{n\to\infty} a_n = 0$. We also showed the following:

- 1. Let $0 \le x < 1$, Consider the sequence (b_n) , where $b_n = -x^n$. Then (b_n) is monotonic (increasing) and bounded $(-1 \le b_n \le 0)$, hence convergent by Monotonic Bounded Theorem.
- 2. Let x > 1 and define the sequence (c_n) , where $c_n = x^n$. This sequence is increasing and unbounded. Hence, (c_n) is divergent, by the Test for Divergent Sequences.
- 3. Let x < -1 and define the sequence (d_n) , where $d_n = x^n$. This sequence is unbounded. Hence, (d_n) is divergent, by the Test for Divergent Sequences.

Now, suppose that -1 < y < 0, and let x = |y|.

Circle the points on the above graph corresponding to the sequence $(y^n) = (y, y^2, y^3, \ldots)$.

Remark 1. In general, a sequence (a_n) is a geometric progression if there is a real number x satisfying

$$\frac{a_{n+1}}{a_n} = x, \quad \text{for every } n = 1, 2, 3, \dots$$

Fact: Every geometric sequence is of the form

$$(cx, cx^2, cx^3, \ldots)$$

for some constant c and real number x.

CREATE YOUR OWN THEOREM!

Geometric Progression Theorem (GPT)

Let x be a real number, c a constant, and consider the geometric progression $(cx^n) = (cx, cx^2, xc^3, \ldots)$.
1. Let $-1 < x < 1$. Then, (cx^n) is convergen and $\lim_{n\to\infty} cx^n = \underline{O}$.
2. Let $ x > 1$. Then, (cx^n) is
3. Let $x = 1$. Then, (cx^n) is
4. Let $x = -1$. Then, (cx^n) is

Use some of the following phrases/symbols to complete the proof of the first proposition above.

'Squeeze Theorem' 'Monotonic Bounded Theorem' 'decreasing' 0

'convergent' 'divergent' 'increasing' 'bounded above' 1∞

Proof of 1. Let -1 < x < 1 and write r = |x|. By the Monotonic Bounded, Thus

the sequences (cr^n) and $(-cr^n)$ are _______. Moreover,

$$\lim_{n\to\infty} cr^n = \lim_{n\to\infty} -cr^n = \underline{\hspace{1cm}}.$$

Hence, using the <u>Squeeze Thm</u>, the sequence (cx^n) is <u>convergent</u> and $\lim_{n\to\infty} cx^n = 0$.

Example 2. 1. Consider the sequence

$$\left(-\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \frac{16}{81}, \ldots\right)$$

This is a geometric progression (x^n) with $x = -\frac{2}{3}$. Hence, since -1 < x < 1, the sequence is convergent with limit 0, by the Geometric Progression Theorem.

2. Consider the sequence (a_n) , where $a_n = \frac{4^n}{3^{n+2}}$. This is a geometric progression since

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{3^{n+2}} \frac{3^{n+2}}{4^n} = \frac{4}{3}, \quad \text{for } n = 1, 2, 3 \dots$$

In fact, we observe that

$$a_n = \frac{4^n}{3^{n+2}} = \frac{1}{3^2} \frac{4^n}{3^n} = \frac{1}{9} \left(\frac{4}{3}\right)^n$$

so that $(a_n) = (cx^n)$, with $c = \frac{1}{9}$, $x = \frac{4}{3}$. By the Geometric Progression Theorem, the sequence is divergent.

Introduction to series: Every real number x has a decimal expansion and this decimal expansion can have finite or infinite length. For example,

$$\frac{1}{3} = 0.33333333...$$

What does the right hand side of this equality mean? One way to rewrite the decimal expansion is:

$$0.33333... = \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \frac{3}{10^4} + ...$$

Again, you might, and should, ask: what does this mean? In particular, what does it mean to 'sum' an infinite number of terms? This obviously(?) does not make any sense when we consider the sum

$$1+2+3+4+... = ???$$

First, we have the following basic observation: it is impossible to 'sum' an infinite number of terms - there is (literally) not enough time to do so. 'Infinite sums' are nonsensical in mathematics. However, it is possible to ask whether the sequence of finite sums

$$s_1 = \frac{3}{10},$$

$$s_2 = \frac{3}{10} + \frac{3}{10^2},$$

$$\vdots$$

$$s_m = \frac{3}{10} + \frac{3}{10^2} + \dots + \frac{3}{10^m}$$

converges to a limit L. In sigma notation we have

$$s_m = \frac{3}{10} + \frac{3}{10^2} + \ldots + \frac{3}{10^m} = \sum_{n=1}^m \frac{3}{10^n}.$$

Definition: Let (a_n) be a sequence.

1. Define the m^{th} partial sum associated to (a_n) to be the (finite) sum

$$s_m = a_1 + a_2 + \ldots + a_m = \sum_{n=1}^m a_n.$$

- 2. Define the sequence of partial sums associated to (a_n) to be the corresponding sequence (s_m) , where s_m is the m^{th} partial sum associated to (a_n) .
- 3. If (s_m) is convergent then we write

$$\sum_{n=1}^{\infty} a_n \stackrel{\text{def}}{=} \lim_{m \to \infty} s_m = \lim_{m \to \infty} \sum_{n=1}^{m} a_n.$$

We call the symbol $\sum_{n=1}^{\infty} a_n$ a series.

4. More generally, we call the symbol $\sum_{n=1}^{\infty} a_n$ a series, even when we don't know whether the associated sequence of partial sums is convergent or not. We say that a series is **convergent** if its associated sequence of partial sums is convergent; we say that a series is **divergent** if it is not convergent.

Important Remark

- A series is the *limit* of a sequence of finite sums.
- A series being convergent *means* its sequence of partial sums is convergent.

CHECK YOUR UNDERSTANDING

1. Let (a_n) be a sequence such that, for each $m=1,2,3,\ldots$, the m^{th} partial sum s_m satisfies

$$s_m = a_1 + a_2 + \ldots + a_m = \frac{2m-1}{3m+5}.$$

Does the series $\sum_{n=1}^{\infty} a_n$ converge? If so, what is its limit? If not, explain carefully why not.

Convergent; since lim Sm =
$$\frac{2}{3m+5} = \frac{2}{3}$$
,

2. Let (a_n) be a sequence such that the sequence of partial sums associated to (a_n) , (s_m) , satisfies

$$s_m = 10 - \frac{4}{m^2 + 1}.$$

Then,
$$\sum_{n=1}^{\infty} a_n =$$

¹See handout for basic properties of sigma notation.

Since a convergent series is, by definition, the limit of a sequence, we can translate some of the Limit Laws for Sequences into corresponding results for series.

ADDITIVE PROPERTIES OF SERIES

Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be <u>convergent</u> series, c a constant. Then,

- 1. $\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$, 2. $\sum_{n=1}^{\infty} ca_n = c(\sum_{n=1}^{\infty} a_n)$

Geometric series

Definition 3. Let r be a real number and consider the associated geometric progression (r^n) . The series $\sum_{n=1}^{\infty} r^n$ is called a geometric series.

Let $\sum_{n=1}^{\infty} r^n$ be a geometric series. Then, the m^{th} partial sum s_m associated to this series is

$$s_m = \underline{\quad r + r^2 + \quad r^m}$$

Nifty observation:

$$s_m - rs_m = \left(\frac{r + r^2 + \dots + r^m}{r} \right) - \left(\frac{r^2 + r^2 + \dots + r^m + r^m}{r} \right)$$

$$= \frac{r - r^m + r^m}{r^m + r^m + r^m}$$

$$\implies s_m(1-r) = (r (r^m))$$

In particular, when $r \neq 1$,

$$s_m = \frac{\sum (1-\sum^m)}{\sum n}$$

Therefore, the sequence of partial sums (s_m) associated to the geometric series $\sum_{n=1}^{\infty}$ is convergent whenever

and divergent whenever

CREATE YOUR OWN THEOREM!

Geometric Series Theorem

Example 4. 1. Consider the series

$$\sum_{n=1}^{\infty} \frac{3}{10^n} = \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + \dots$$

Using the Additive Properties for Series, we have

$$\sum_{n=1}^{\infty} \frac{3}{10^n} = 3 \sum_{n=1}^{\infty} \frac{1}{10^n}.$$

The series on the right hand side is a geometric series with $r = \frac{1}{10}$. Hence, since |r| < 1, the Geometric Series Theorem gives

$$\sum_{n=1}^{\infty} \frac{3}{10^n} = 3\left(\frac{1}{10}, \frac{1}{1 - \frac{1}{10}}\right) = \frac{1}{3}$$

2. The series $\sum_{n=1}^{\infty} (-2)^n 3^{2-n}$ is convergent: indeed, this is the series associated to the sequence (a_n) , where

$$a_n = (-2)^n 3^{2-n} = (-2)^n 3^2 3^{-n} = 9\left(\frac{-2}{3}\right)^n.$$

Hence,

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}9\left(\frac{-2}{3}\right)^n=9\sum_{n=1}^{\infty}\left(\frac{-2}{3}\right)^n$$

and we identify this latter series as a geometric series with $r=\frac{-2}{3}$. As |r|<1, the series is convergent with limit

$$9\sum_{n=1}^{\infty} \left(\frac{-2}{3}\right)^n = 9\left(\frac{-2}{3}\right)\frac{1}{1+\frac{2}{3}} = -\frac{18}{5}.$$