## Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

## February 22 Lecture

## Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1-11.2.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Partial sums, infinite geometric series.

KEYWORDS: geometric progression, series, partial sums, convergent series, divergent series, geometric series.

## Sequences: Geometric Progressions. Introduction to SERIES

Today we determine convergence of a class of sequences known as geometric progressions. We will also take our first steps into the realm of series.

First we recall a result from February 21 Homework.

## Test for Divergent Sequences:

Let $\left(a_{n}\right)$ be a sequence. If $\left(a_{n}\right)$ is unbounded then $\left(a_{n}\right)$ is divergent.

## Geometric progressions:

Suppose that $0 \leq x \leq 1$. Consider the sequence ( $a_{n}$ ), where $a_{n}=x^{n}$. Such a sequence is called a geometric progression. We say in February 21 Lecture that $\left(a_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=0$. We also showed the following:

1. Let $0 \leq x<1$, Consider the sequence $\left(b_{n}\right)$, where $b_{n}=-x^{n}$. Then $\left(b_{n}\right)$ is monotonic (increasing) and bounded ( $-1 \leq b_{n} \leq 0$ ), hence convergent by Monotonic Bounded Theorem.
2. Let $x>1$ and define the sequence $\left(c_{n}\right)$, where $c_{n}=x^{n}$. This sequence is increasing and unbounded. Hence, $\left(c_{n}\right)$ is divergent, by the Test for Divergent Sequences.
3. Let $x<-1$ and define the sequence $\left(d_{n}\right)$, where $d_{n}=x^{n}$. This sequence is unbounded. Hence, $\left(d_{n}\right)$ is divergent, by the Test for Divergent Sequences.

Now, suppose that $-1<y<0$, and let $x=|y|$.


Circle the points on the above graph corresponding to the sequence $\left(y^{n}\right)=$ ( $y, y^{2}, y^{3}, \ldots$ ).

Remark 1. In general, a sequence $\left(a_{n}\right)$ is a geometric progression if there is a real number $x$ satisfying

$$
\frac{a_{n+1}}{a_{n}}=x, \quad \text { for every } n=1,2,3, \ldots
$$

Fact: Every geometric sequence is of the form

$$
\left(c x, c x^{2}, c x^{3}, \ldots\right)
$$

for some constant $c$ and real number $x$.

Create your own Theorem!
Geometric Progression Theorem (GPT)
Let $x$ be a real number, $c$ a constant, and consider the geometric progression $\left(c x^{n}\right)=\left(c x, c x^{2}, x c^{3}, \ldots\right)$.

1. Let $-1<x<1$. Then, $\left(c x^{n}\right)$ is $\qquad$ and $\lim _{n \rightarrow \infty} x^{n}=$ $\qquad$ -.
2. Let $|x|>1$. Then, $\left(c x^{n}\right)$ is $\qquad$ .
3. Let $x=1$. Then, $\left(c x^{n}\right)$ is $\qquad$ and $\lim _{n \rightarrow \infty} x^{n}=$ $\qquad$ .
4. Let $x=-1$. Then, $\left(c x^{n}\right)$ is $\qquad$ -.

Use some of the following phrases/symbols to complete the proof of the first proposition above.
'Squeeze Theorem' 'Monotonic Bounded Theorem' 'decreasing' 0 ‘convergent' ‘divergent' 'increasing' ‘bounded above' $1 \infty$

## Proof of 1.

Let $-1<x<1$ and write $r=|x|$. By the $\qquad$ —,
the sequences $\left(c r^{n}\right)$ and $\left(-c r^{n}\right)$ are $\qquad$ . Moreover,

$$
\lim _{n \rightarrow \infty} c r^{n}=\lim _{n \rightarrow \infty}-c r^{n}=
$$

$\qquad$ .
$\qquad$ , the sequence ( $c x^{n}$ ) is $\qquad$
and $\lim _{n \rightarrow \infty} c x^{n}=$ $\qquad$ .

Example 2. 1. Consider the sequence

$$
\left(-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \frac{16}{81}, \ldots\right)
$$

This is a geometric progression $\left(x^{n}\right)$ with $x=-\frac{2}{3}$. Hence, since $-1<x<1$, the sequence is convergent with limit 0 , by the Geometric Progression Theorem.
2. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{4^{n}}{3^{n+2}}$. This is a geometric progression since

$$
\frac{a_{n+1}}{a_{n}}=\frac{4^{n+1}}{3^{n+3}} \frac{3^{n+2}}{4^{n}}=\frac{4}{3}, \quad \text { for } n=1,2,3 \ldots
$$

In fact, we observe that

$$
a_{n}=\frac{4^{n}}{3^{n+2}}=\frac{1}{3^{2}} \frac{4^{n}}{3^{n}}=\frac{1}{9}\left(\frac{4}{3}\right)^{n}
$$

so that $\left(a_{n}\right)=\left(c x^{n}\right)$, with $c=$ $\qquad$ , $x=$ $\qquad$ . By the Geometric Progression Theorem, the sequence is divergent.

Introduction to series: Every real number $x$ has a decimal expansion and this decimal expansion can have finite or infinite length. For example,

$$
\frac{1}{3}=0.3333333 \ldots
$$

What does the right hand side of this equality mean?
One way to rewrite the decimal expansion is:

$$
0.33333 \ldots=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+\ldots
$$

Again, you might, and should, ask: what does this mean? In particular, what does it mean to 'sum' an infinite number of terms? This obviously(?) does not make any sense when we consider the sum

$$
1+2+3+4+\ldots=? ? ?
$$

First, we have the following basic observation: it is impossible to 'sum' an infinite number of terms - there is (literally) not enough time to do so. 'Infinite sums' are nonsensical in mathematics. However, it is possible to ask whether the sequence of finite sums

$$
\begin{aligned}
& s_{1}=\frac{3}{10}, \\
& s_{2}=\frac{3}{10}+\frac{3}{10^{2}}, \\
& \vdots \\
& s_{m}=\frac{3}{10}+\frac{3}{10^{2}}+\ldots+\frac{3}{10^{m}}
\end{aligned}
$$

converges to a limit $L$. In sigma notation we have

$$
s_{m}=\frac{3}{10}+\frac{3}{10^{2}}+\ldots+\frac{3}{10^{m}}=\sum_{n=1}^{m} \frac{3}{10^{n}} .
$$

Definition: Let $\left(a_{n}\right)$ be a sequence.

1. Define the $m^{t h}$ partial sum associated to $\left(a_{n}\right)$ to be the (finite) sum

$$
s_{m}=a_{1}+a_{2}+\ldots+a_{m}=\sum_{n=1}^{m} a_{n} .
$$

2. Define the sequence of partial sums associated to $\left(a_{n}\right)$ to be the corresponding sequence $\left(s_{m}\right)$, where $s_{m}$ is the $m^{t h}$ partial sum associated to $\left(a_{n}\right)$.
3. If $\left(s_{m}\right)$ is convergent then we write

$$
\sum_{n=1}^{\infty} a_{n} \stackrel{\text { def }}{=} \lim _{m \rightarrow \infty} s_{m}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} a_{n}
$$

We call the symbol $\sum_{n=1}^{\infty} a_{n}$ a series.
4. More generally, we call the symbol $\sum_{n=1}^{\infty} a_{n}$ a series, even when we don't know whether the associated sequence of partial sums is convergent or not. We say that a series is convergent if its associated sequence of partial sums is convergent; we say that a series is divergent if it is not convergent.

## Important Remark

- A series is the limit of a sequence of finite sums.
- A series being convergent *means* its sequence of partial sums is convergent.


## Check your understanding

1. Let $\left(a_{n}\right)$ be a sequence such that, for each $m=1,2,3, \ldots$, the $m^{\text {th }}$ partial sum $s_{m}$ satisfies

$$
s_{m}=a_{1}+a_{2}+\ldots+a_{m}=\frac{2 m-1}{3 m+5} .
$$

Does the series $\sum_{n=1}^{\infty} a_{n}$ converge? If so, what is its limit? If not, explain carefully why not.
2. Let $\left(a_{n}\right)$ be a sequence such that the sequence of partial sums associated to $\left(a_{n}\right),\left(s_{m}\right)$, satisfies

$$
s_{m}=10-\frac{4}{m^{2}+1} .
$$

Then, $\sum_{n=1}^{\infty} a_{n}=$ $\qquad$ .

[^0]Since a convergent series is, by definition, the limit of a sequence, we can translate some of the Limit Laws for Sequences into corresponding results for series.

Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be convergent series, $c$ a constant. Then,

1. $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=\sum_{n=1}^{\infty} a_{n} \pm \sum_{n=1}^{\infty} b_{n}$,
2. $\sum_{n=1}^{\infty} c a_{n}=c\left(\sum_{n=1}^{\infty} a_{n}\right)$

## Geometric series

Definition 3. Let $r$ be a real number and consider the associated geometric progression ( $r^{n}$ ). The series $\sum_{n=1}^{\infty} r^{n}$ is called a geometric series.

Let $\sum_{n=1}^{\infty} r^{n}$ be a geometric series. Then, the $m^{t h}$ partial sum $s_{m}$ associated to this series is

$$
s_{m}=
$$

$\qquad$
Nifty observation:

$$
\begin{aligned}
s_{m}-r s_{m} & = \\
& = \\
\Longrightarrow \quad s_{m}(1-r) & =
\end{aligned}
$$

In particular, when $r \neq 1$,

$$
s_{m}=
$$

Therefore, the sequence of partial sums $\left(s_{m}\right)$ associated to the geometric series $\sum_{n=1}^{\infty}$ is convergent whenever
and divergent whenever

## Create your own Theorem!

## Geometric Series Theorem

Let $\qquad$ $<r<$ $\qquad$ . Then, the geometric series $\sum_{n=1}^{\infty} r^{n}$ is $\qquad$ and

$$
\sum_{n=1}^{\infty} r^{n}=
$$

$\qquad$ .

Example 4. 1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{3}{10^{n}}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\ldots
$$

Using the Additive Properties for Series, we have

$$
\sum_{n=1}^{\infty} \frac{3}{10^{n}}=3 \sum_{n=1}^{\infty} \frac{1}{10^{n}} .
$$

The series on the right hand side is a geometric series with $r=\frac{1}{10}$. Hence, since $|r|<1$, the Geometric Series Theorem gives

$$
\sum_{n=1}^{\infty} \frac{3}{10^{n}}=3\left(\frac{1}{10} \cdot \frac{1}{1-\frac{1}{10}}\right)=\frac{1}{3}
$$

2. The series $\sum_{n=1}^{\infty}(-2)^{n} 3^{2-n}$ is convergent: indeed, this is the series associated to the sequence $\left(a_{n}\right)$, where

$$
a_{n}=(-2)^{n} 3^{2-n}=(-2)^{n} 3^{2} 3^{-n}=9\left(\frac{-2}{3}\right)^{n}
$$

Hence,

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} 9\left(\frac{-2}{3}\right)^{n}=9 \sum_{n=1}^{\infty}\left(\frac{-2}{3}\right)^{n}
$$

and we identify this latter series as a geometric series with $r=\frac{-2}{3}$. As $|r|<1$, the series is convergent with limit

$$
9 \sum_{n=1}^{\infty}\left(\frac{-2}{3}\right)^{n}=9\left(\frac{-2}{3}\right) \frac{1}{1+\frac{2}{3}}=-\frac{18}{5} .
$$


[^0]:    ${ }^{1}$ See handout for basic properties of sigma notation.

