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Sequences: Geometric Progressions. Introduction to
Series

Today we determine convergence of a class of sequences known as geometric
progressions. We will also take our first steps into the realm of series.

First we recall a result from February 21 Homework.

Test for Divergent Sequences:

Let (an) be a sequence. If (an) is unbounded then (an)
is divergent.

Geometric progressions:

Suppose that 0 ≤ x ≤ 1. Consider the sequence (an), where an = xn. Such a sequence
is called a geometric progression. We say in February 21 Lecture that (an) is
convergent and limn→∞ an = 0. We also showed the following:

1. Let 0 ≤ x < 1, Consider the sequence (bn), where bn = −xn. Then (bn) is mono-
tonic (increasing) and bounded (−1 ≤ bn ≤ 0), hence convergent by Monotonic
Bounded Theorem.

2. Let x > 1 and define the sequence (cn), where cn = xn. This sequence is
increasing and unbounded. Hence, (cn) is divergent, by the Test for Divergent
Sequences.

3. Let x < −1 and define the sequence (dn), where dn = xn. This sequence is
unbounded. Hence, (dn) is divergent, by the Test for Divergent Sequences.
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Now, suppose that −1 < y < 0, and let x = ∣y∣.

n

y

◇

◇
◇
◇
◇ ◇ ◇ ◇ ◇ . . .. . .◇ ◇ ◇ ◇

⋆

⋆
⋆
⋆
⋆ ⋆ ⋆ ⋆ ⋆ . . .. . .⋆ ⋆ ⋆ ⋆

0 < x < 1
◇ − an = xn

⋆ − bn = −x
n

Circle the points on the above graph corresponding to the sequence (yn) =
(y, y2, y3, . . .).

Remark 1. In general, a sequence (an) is a geometric progression if there is a
real number x satisfying

an+1
an

= x, for every n = 1,2,3, . . ..

Fact: Every geometric sequence is of the form

(cx, cx2, cx3, . . .)

for some constant c and real number x.

Create your own Theorem!
Geometric Progression Theorem (GPT)

Let x be a real number, c a constant, and consider the geometric progression
(cxn) = (cx, cx2, xc3, . . .).

1. Let −1 < x < 1. Then, (cxn) is and
limn→∞ xn = .

2. Let ∣x∣ > 1. Then, (cxn) is .

3. Let x = 1. Then, (cxn) is and limn→∞ xn = .

4. Let x = −1. Then, (cxn) is .

Use some of the following phrases/symbols to complete the proof of the first
proposition above.

‘Squeeze Theorem’ ‘Monotonic Bounded Theorem’ ‘decreasing’ 0

‘convergent’ ‘divergent’ ‘increasing’ ‘bounded above’ 1 ∞

Proof of 1.
Let −1 < x < 1 and write r = ∣x∣. By the ,

the sequences (crn) and (−crn) are . Moreover,

lim
n→∞

crn = lim
n→∞

−crn = .
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Hence, using the , the sequence (cxn) is

and limn→∞ cxn = .

Example 2. 1. Consider the sequence

(−
2

3
,
4

9
,−

8

27
,
16

81
, . . .)

This is a geometric progression (xn) with x = −2
3 . Hence, since −1 < x < 1, the

sequence is convergent with limit 0, by the Geometric Progression Theorem.

2. Consider the sequence (an), where an = 4n

3n+2 . This is a geometric progression
since

an+1
an

=
4n+1

3n+3

3n+2

4n
=

4

3
, for n = 1,2,3 . . .

In fact, we observe that

an =
4n

3n+2
=

1

32

4n

3n
=

1

9
(

4

3
)
n

so that (an) = (cxn), with c = , x = . By the Geometric Progression
Theorem, the sequence is divergent.

Introduction to series: Every real number x has a decimal expansion and
this decimal expansion can have finite or infinite length. For example,

1

3
= 0.3333333 . . .

What does the right hand side of this equality mean?
One way to rewrite the decimal expansion is:

0.33333 . . . =
3

10
+

3

102
+

3

103
+

3

104
+ . . .

Again, you might, and should, ask: what does this mean? In particular, what does
it mean to ‘sum’ an infinite number of terms? This obviously(?) does not make any
sense when we consider the sum

1 + 2 + 3 + 4 + . . . = ???

First, we have the following basic observation: it is impossible to ‘sum’ an in-
finite number of terms - there is (literally) not enough time to do so. ‘Infinite
sums’ are nonsensical in mathematics. However, it is possible to ask whether the
sequence of finite sums

s1 =
3
10 ,

s2 =
3
10 +

3
102 ,

⋮

sm = 3
10 +

3
102 + . . . + 3

10m
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converges to a limit L. In sigma notation1 we have

sm =
3

10
+

3

102
+ . . . +

3

10m
=

m

∑
n=1

3

10n
.

Definition: Let (an) be a sequence.

1. Define the mth partial sum associated to (an) to be the (finite) sum

sm = a1 + a2 + . . . + am =
m

∑
n=1

an.

2. Define the sequence of partial sums associated to (an) to be the corre-
sponding sequence (sm), where sm is the mth partial sum associated to (an).

3. If (sm) is convergent then we write

∞

∑
n=1

an
def
= lim

m→∞
sm = lim

m→∞

m

∑
n=1

an.

We call the symbol ∑
∞

n=1 an a series.

4. More generally, we call the symbol ∑
∞

n=1 an a series, even when we don’t know
whether the associated sequence of partial sums is convergent or not. We
say that a series is convergent if its associated sequence of partial sums is
convergent; we say that a series is divergent if it is not convergent.

Important Remark

● A series is the limit of a sequence of finite sums.

● A series being convergent *means* its sequence of partial sums is
convergent.

Check your understanding

1. Let (an) be a sequence such that, for each m = 1,2,3, . . ., the mth partial sum
sm satisfies

sm = a1 + a2 + . . . + am =
2m − 1

3m + 5
.

Does the series ∑
∞

n=1 an converge? If so, what is its limit? If not, explain
carefully why not.

2. Let (an) be a sequence such that the sequence of partial sums associated to
(an), (sm), satisfies

sm = 10 −
4

m2 + 1
.

Then, ∑
∞

n=1 an = .

1See handout for basic properties of sigma notation.
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Since a convergent series is, by definition, the limit of a sequence, we can translate
some of the Limit Laws for Sequences into corresponding results for series.

Additive properties of series
Let ∑

∞

n=1 an, ∑
∞

n=1 bn be convergent series, c a constant. Then,

1. ∑
∞

n=1 (an ± bn) = ∑
∞

n=1 an ±∑
∞

n=1 bn,

2. ∑
∞

n=1 can = c (∑
∞

n=1 an)

Geometric series

Definition 3. Let r be a real number and consider the associated geometric pro-
gression (rn). The series ∑

∞

n=1 r
n is called a geometric series.

Let ∑
∞

n=1 r
n be a geometric series. Then, the mth partial sum sm associated to

this series is
sm =

Nifty observation:

sm − rsm =

=

Ô⇒ sm(1 − r) =

In particular, when r ≠ 1,

sm =

Therefore, the sequence of partial sums (sm) associated to the geometric series ∑
∞

n=1

is convergent whenever

and divergent whenever

Create your own Theorem!

Geometric Series Theorem

Let < r < . Then, the geometric series ∑
∞

n=1 r
n is

and
∞

∑
n=1

rn = .

Example 4. 1. Consider the series

∞

∑
n=1

3

10n
=

3

10
+

3

102
+

3

103
+ . . .
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Using the Additive Properties for Series, we have

∞

∑
n=1

3

10n
= 3

∞

∑
n=1

1

10n
.

The series on the right hand side is a geometric series with r = 1
10 . Hence, since

∣r∣ < 1, the Geometric Series Theorem gives

∞

∑
n=1

3

10n
= 3(

1

10
.

1

1 − 1
10

) =
1

3

2. The series ∑
∞

n=1(−2)n32−n is convergent: indeed, this is the series associated to
the sequence (an), where

an = (−2)n32−n = (−2)n323−n = 9(
−2

3
)
n

.

Hence,
∞

∑
n=1

an =
∞

∑
n=1

9(
−2

3
)
n

= 9
∞

∑
n=1

(
−2

3
)
n

and we identify this latter series as a geometric series with r = −2
3 . As ∣r∣ < 1,

the series is convergent with limit

9
∞

∑
n=1

(
−2

3
)
n

= 9(
−2

3
)

1

1 + 2
3

= −
18

5
.
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