

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 21 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.

- Calculus, Spivak, 3rd Ed.: Section 22.

- AP Calculus BC, Khan Academy: Infinite sequences.

SEQUENCES: THE MONOTONIC BOUNDED THEOREM

Today we will deduce a useful theorem, the Monotonic Bounded Theorem (or MB Theorem).

1 Monotonic sequences

Definition 1.1. Let (a_n) be a sequence that is either increasing or decreasing (or both!). Then, we say that (a_n) is monotonic.

CHECK YOUR UNDERSTANDING

1. Draw the graphs of three (different) monotonic, bounded sequences (a_n) , (b_n) , (c_n) .

2. What common feature do the sequences (a_n) , (b_n) , (c_n) possess?

CREATE YOUR OWN THEOREM!

Complete the following statements

Monotonic+Bounded Theorem

Let (a_n) be a monotonic and bounded sequence. Then, (a_n) is $\underline{CONCRGENT}$.

More generally,

- if (a_n) is decreasing and **BONNOTO** BELOW then (a_n) is CONNEGENT.
- if (a_n) is increasing and BOUNDED ABOVE then (a_n) is CONVERGEN.T

Example 1.2. 1. Consider the sequence (a_n) , where $a_n = \frac{1}{2^n}$. Then, for any natural number n,

$$a_{n+1} = \frac{1}{2^{n+1}} = \frac{1}{2}a_n < a_n.$$

Hence, (a_n) is (strictly) decreasing. Also, $a_n > 0$, for every n, so that (a_n) is bounded below. Hence, by the Monotonic Bounded Theorem the sequence (a_n) is convergent.

2. Consider the sequence (a_n) , where $a_n = \cos\left(\frac{\pi(n-1)}{2n}\right)$. Note that

$$0 \le \frac{\pi(n-1)}{2n} = \frac{\pi}{2} \left(1 - \frac{1}{n} \right) < \frac{\pi}{2} \left(1 - \frac{1}{n+1} \right) < \frac{\pi}{2}$$

Hence, since the (differentiable) function $\cos(x)$ is decreasing on the interval $[0,\pi]$, the sequence (a_n) is decreasing. Moreover, a_n is bounded below (by -1, say) so that (a_n) is convergent, by the Monotonic Bounded Theorem.

- Remark 1.3. 1. The Monotonic+Bounded Theorem is a little strange: it tells us that a monotonic, bounded sequence is convergent but does not say say how to find $\lim_{n\to\infty} a_n!$ Compare this with the Squeeze Theorem where we not only show that a sequence is convergent but also obtain its limit.
 - 2. It can be tricky to check whether a sequence is monotonic, in general. When we are introduced to the technique known as *mathematical induction*, we will have a tool to determine montonicity for a larger class of sequences.

CHECK YOUR UNDERSTANDING Consider the sequence (a_n) , where

$$a_n = \frac{n}{2^n}$$

1. Write down the first five terms of (a_n) .

$$a_1 = \frac{1}{2}$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{3}{8}$, $a_4 = \frac{1}{4}$, $a_5 = \frac{5}{32}$

2. Do you think (a_n) is convergent/divergent? Provide an explanation in support of your claim.

We will now try to understand the behaviour of the sequence more thoroughly.

3. Show that $2n \ge n+1$, whenever $n \ge 1$.

$$n > 1 \Rightarrow n + n > n + 1$$

$$= > 2n > n + 1.$$

4. Observe that we can write $a_n = \frac{2n}{2^{n+1}}$, for any $n = 1, 2, 3, \ldots$ Using this observation, and the previous problem, show that $a_n \ge a_{n+1}$, for every $n = 1, 2, 3, \ldots$

$$a_n = \frac{2n}{2^{n+1}} \ge \frac{2n}{2^{n+1}} = a_{n+1}$$
, wring (3.)

5. Use the Monotonic Bounded Theorem to explain why (a_n) is convergent.

(an) is bounded below by and decreasing. Therefore, (an) connegent by MBT.

6. Does your argument determine the limit of the convergent sequence (a_n) ?

No 1

Important Example: Suppose that $0 \le x \le 1$. Consider the sequence (a_n) , where $a_n = x^n$. Such a sequence is called a geometric progression. For each n = 1, 2, 3, ...

$$a_{n+1} - a_n = x^{n+1} - x^n = x^n(x-1) \le 0$$
, because $0 \le x \le 1$

 $a_{n+1} \le a_n$, n = 1, 2, 3, ...

Hence, (a_n) is decreasing. Also, (a_n) is bounded: for each n = 1, 2, 3, ..., we

have __an > 0 __. Therefore, by the __ Manotonic Banded Theorem the

sequence (a_n) is Cornercent.

In fact, $\lim_{n\to\infty} a_n = 0$ (see Appendix).

CHECK YOUR UNDERSTANDING

1. Let $0 \le x < 1$, Consider the sequence (b_n) , where $b_n = -x^n$. Circle all that apply increasing

monotonic bounded convergent

2. Let x > 1 and define the sequence (c_n) , where $c_n = x^n$. Circle all that apply to (c_n) .

bounded monotonic

3. Let x < -1 and define the sequence (d_n) , where $d_n = x^n$. Circle all that apply to (d_n) .

monotonic

Now, suppose that -1 < x < 0. Circle the points on the above graph corresponding to the sequence $(x^n) = (x, x^2, x^3, ...)$.

Remark 1.4. In general, a sequence (a_n) is a geometric progression if there is a real number x satisfying

$$\frac{a_{n+1}}{a_n} = x, \quad \text{for every } n = 1, 2, 3, \dots$$

Every geometric sequence is of the form

$$(cx, cx^2, cx^3, \ldots)$$

for some constant c and real number x.

CREATE YOUR OWN THEOREM!
Geometric Progression Theorem (GPT)

Let x be a real number, c a constant, and consider the geometric progression $(cx^n) = (cx, cx^2, xc^3, \ldots)$.

1. Let -1 < x < 1. Then, (cx^n) is _______ and $\lim_{n \to \infty} x^n =$ ______.

2. Let |x| > 1. Then, (cx^n) is _______ and $\lim_{n \to \infty} x^n =$ ______.

3. Let x = 1. Then, (cx^n) is _______ and $\lim_{n \to \infty} x^n =$ ______.

Use some of the following phrases/symbols to complete the proof of the first proposition above.

'Squeeze Theorem' 'Monotonic Bounded Theorem' 'decreasing' 0