

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 21 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: The Monotonic Bounded Theorem

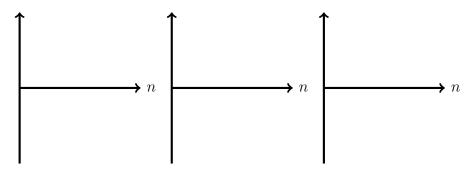
Today we will deduce a useful theorem, the **Monotonic Bounded Theorem** (or **MB Theorem**).

1 Monotonic sequences

Definition 1.1. Let (a_n) be a sequence that is *either* increasing or decreasing (or both!). Then, we say that (a_n) is **monotonic**.

CHECK YOUR UNDERSTANDING

1. Draw the graphs of three (different) monotonic, bounded sequences (a_n) , (b_n) , (c_n) .



2. What common feature do the sequences (a_n) , (b_n) , (c_n) possess?

CREATE YOUR OWN THEOREM!

Complete the following statements Monotonic+Bounded TheoremLet (a_n) be a monotonic and bounded sequence. Then, (a_n) is ________. More generally, • if (a_n) is decreasing and _______then (a_n) is _______.

• if (a_n) is increasing and ______then (a_n) is

Example 1.2. 1. Consider the sequence (a_n) , where $a_n = \frac{1}{2^n}$. Then, for any natural number n,

$$a_{n+1} = \frac{1}{2^{n+1}} = \frac{1}{2}a_n < a_n$$

Hence, (a_n) is (strictly) decreasing. Also, $a_n > 0$, for every n, so that (a_n) is bounded below. Hence, by the Monotonic Bounded Theorem the sequence (a_n) is convergent.

2. Consider the sequence (a_n) , where $a_n = \cos\left(\frac{\pi(n-1)}{2n}\right)$. Note that

$$0 \le \frac{\pi(n-1)}{2n} = \frac{\pi}{2} \left(1 - \frac{1}{n} \right) < \frac{\pi}{2} \left(1 - \frac{1}{n+1} \right) < \frac{\pi}{2}$$

Hence, since the (differentiable) function $\cos(x)$ is decreasing on the interval $[0, \pi]$, the sequence (a_n) is decreasing. Moreover, a_n is bounded below (by -1, say) so that (a_n) is convergent, by the Monotonic Bounded Theorem.

- **Remark 1.3.** 1. The Monotonic+Bounded Theorem is a little strange: it tells us that a monotonic, bounded sequence is convergent but does not say say how to find $\lim_{n\to\infty} a_n!$ Compare this with the Squeeze Theorem where we not only show that a sequence is convergent but also obtain its limit.
 - 2. It can be tricky to check whether a sequence is monotonic, in general. When we are introduced to the technique known as *mathematical induction*, we will have a tool to determine montonicity for a larger class of sequences.

CHECK YOUR UNDERSTANDING Consider the sequence (a_n) , where

$$a_n = \frac{n}{2^n}$$

- 1. Write down the first five terms of (a_n) .
- 2. Do you think (a_n) is convergent/divergent? Provide an explanation in support of your claim.

We will now try to understand the behaviour of the sequence more thoroughly.

3. Show that $2n \ge n+1$, whenever $n \ge 1$.

4. Observe that we can write $a_n = \frac{2n}{2^{n+1}}$, for any $n = 1, 2, 3, \ldots$ Using this observation, and the previous problem, show that $a_n \ge a_{n+1}$, for every $n = 1, 2, 3, \ldots$

5. Use the Monotonic Bounded Theorem to explain why (a_n) is convergent.

6. Does your argument determine the limit of the convergent sequence (a_n) ?

Important Example: Suppose that $0 \le x \le 1$. Consider the sequence (a_n) , where $a_n = x^n$. Such a sequence is called a **geometric progression**. For each n = 1, 2, 3, ...

 $a_{n+1} - a_n = x^{n+1} - x^n = x^n(x-1) \le 0$, because $0 \le x \le 1$

 $\implies a_{n+1} \leq a_n, \quad n = 1, 2, 3, \dots$

Hence, (a_n) is _____. Also, (a_n) is bounded: for each $n = 1, 2, 3, \ldots$, we

have _____. Therefore, by the ______ Theorem the

sequence (a_n) is _____.

In fact, $\lim_{n\to\infty} a_n = 0$ (see Appendix). CHECK YOUR UNDERSTANDING

1. Let $0 \le x < 1$, Consider the sequence (b_n) , where $b_n = -x^n$. Circle all that apply to (b_n) .

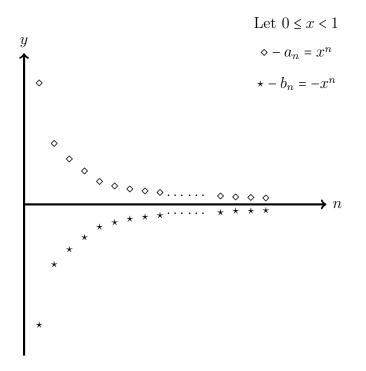
monotonic bounded convergent

2. Let x > 1 and define the sequence (c_n) , where $c_n = x^n$. Circle all that apply to (c_n) .

monotonic bounded convergent

3. Let x < -1 and define the sequence (d_n) , where $d_n = x^n$. Circle all that apply to (d_n) .

```
monotonic bounded convergent
```



Now, suppose that -1 < x < 0. Circle the points on the above graph corresponding to the sequence $(x^n) = (x, x^2, x^3, ...)$.

Remark 1.4. In general, a sequence (a_n) is a geometric progression if there is a real number x satisfying

$$\frac{a_{n+1}}{a_n} = x$$
, for every $n = 1, 2, 3, ...$

Every geometric sequence is of the form

 (cx, cx^2, cx^3, \ldots)

for some constant c and real number x.

CREATE YOUR OWN THEOREM! Geometric Progression Theorem (GPT)

Let x be a real number, c a constant, and consider the geometric progression $(cx^n) = (cx, cx^2, xc^3, ...).$ 1. Let -1 < x < 1. Then, (cx^n) is ______ and $\lim_{n \to \infty} x^n =$ _____. 2. Let |x| > 1. Then, (cx^n) is ______. 3. Let x = 1. Then, (cx^n) is ______ and $\lim_{n \to \infty} x^n =$ _____. 4. Let x = -1. Then, (cx^n) is ______.

Use some of the following phrases/symbols to complete the proof of the first proposition above.

'Squeeze Theorem' 'Monotonic Bounded Theorem' 'decreasing' 0

'convergent' 'divergent' 'increasing' 'bounded above' 1∞

Proof of 1.

Let -1 < x < 1 and write r = |x|. By the _____,

the sequences (cr^n) and $(-cr^n)$ are _____. Moreover,

 $\lim_{n \to \infty} cr^n = \lim_{n \to \infty} -cr^n = \underline{\qquad}.$

Hence, using the ______, the sequence (cx^n) is ______

and $\lim_{n\to\infty} cx^n =$ _____.

Example 1.5. 1. Consider the sequence

$$(-\frac{2}{3},\frac{4}{9},-\frac{8}{27},\frac{16}{81},\ldots)$$

This is a geometric progression (x^n) with $x = -\frac{2}{3}$. Hence, since -1 < x < 1, the sequence is convergent with limit 0, by the Geometric Progression Theorem.

2. Consider the sequence (a_n) , where $a_n = \frac{4^n}{3^{n+2}}$. This is a geometric progression since

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}}{3^{n+3}} \frac{3^{n+2}}{4^n} = \frac{4}{3}, \quad \text{for } n = 1, 2, 3 \dots$$

In fact, we observe that

$$a_n = \frac{4^n}{3^{n+2}} = \frac{1}{3^2} \frac{4^n}{3^n} = \frac{1}{9} \left(\frac{4}{3}\right)^n$$

so that $(a_n) = (cx^n)$, with $c = \frac{1}{9}$, $x = \frac{4}{3}$. By the Geometric Progression Theorem, the sequence is divergent.

Appendix: We will show that the convergent sequence (x^n) , where $0 \le x < 1$, has limit 0.

Denote the limit of the convergent sequence (x^n) by L: we want to show that L = 0. We note the following crucial observation:

the limit of the convergent sequence $(a_n) = (x, x^2, x^3, x^4, ...)$ is equal to the limit of the convergent sequence $(b_n) = (x^2, x^3, x^4, x^5, ...)$

We have $b_n = xa_n$, for each n = 1, 2, 3, ... Thus, using the limit laws, we have

$$L = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (xa_n) = x \left(\lim_{n \to \infty} a_n \right) = xL$$
$$\implies L - xL = 0 \implies L(x - 1) = 0$$

However, we chose $0 \le x < 1$ so that the only way this last equality can hold is if L = 0. Hence,

$$\lim_{n \to \infty} x^n = 0, \quad \text{whenever } 0 \le x < 1.$$