
Calculus II: Spring 2018
Contact: gmelvin@middlebury.edu

February 21 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: The Monotonic Bounded Theorem

Today we will deduce a useful theorem, the Monotonic Bounded Theorem
(or MB Theorem).

1 Monotonic sequences

Definition 1.1. Let (an) be a sequence that is either increasing or decreasing (or
both!). Then, we say that (an) is monotonic.

Check your understanding

1. Draw the graphs of three (different) monotonic, bounded sequences (an), (bn),
(cn).

n n n

2. What common feature do the sequences (an), (bn), (cn) possess?

Create your own Theorem!
Complete the following statements
Monotonic+Bounded Theorem

Let (an) be a monotonic and bounded sequence. Then, (an) is
.

More generally,

● if (an) is decreasing and then (an) is
.

● if (an) is increasing and then (an) is
.
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Example 1.2. 1. Consider the sequence (an), where an = 1
2n . Then, for any

natural number n,

an+1 =
1

2n+1
=

1

2
an < an.

Hence, (an) is (strictly) decreasing. Also, an > 0, for every n, so that (an)
is bounded below. Hence, by the Monotonic Bounded Theorem the sequence
(an) is convergent.

2. Consider the sequence (an), where an = cos (π(n−1)2n ). Note that

0 ≤
π(n − 1)

2n
=
π

2
(1 −

1

n
) <

π

2
(1 −

1

n + 1
) <

π

2

Hence, since the (differentiable) function cos(x) is decreasing on the interval
[0, π], the sequence (an) is decreasing. Moreover, an is bounded below (by −1,
say) so that (an) is convergent, by the Monotonic Bounded Theorem.

Remark 1.3. 1. The Monotonic+Bounded Theorem is a little strange: it tells
us that a monotonic, bounded sequence is convergent but does not say say how
to find limn→∞ an! Compare this with the Squeeze Theorem where we not only
show that a sequence is convergent but also obtain its limit.

2. It can be tricky to check whether a sequence is monotonic, in general. When
we are introduced to the technique known as mathematical induction, we will
have a tool to determine montonicity for a larger class of sequences.

Check your understanding
Consider the sequence (an), where

an =
n

2n

1. Write down the first five terms of (an).

2. Do you think (an) is convergent/divergent? Provide an explanation in support
of your claim.

We will now try to understand the behaviour of the sequence more thoroughly.

3. Show that 2n ≥ n + 1, whenever n ≥ 1.
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4. Observe that we can write an =
2n
2n+1 , for any n = 1,2,3, . . .. Using this obser-

vation, and the previous problem, show that an ≥ an+1, for every n = 1,2,3, . . ..

5. Use the Monotonic Bounded Theorem to explain why (an) is convergent.

6. Does your argument determine the limit of the convergent sequence (an)?

Important Example: Suppose that 0 ≤ x ≤ 1. Consider the sequence (an), where
an = xn. Such a sequence is called a geometric progression. For each n = 1,2,3, . . .

an+1 − an = x
n+1 − xn = xn(x − 1) ≤ 0, because 0 ≤ x ≤ 1

Ô⇒ an+1 ≤ an, n = 1,2,3, . . . .

Hence, (an) is . Also, (an) is bounded: for each n = 1,2,3, . . ., we

have . Therefore, by the Theorem the

sequence (an) is .

In fact, limn→∞ an = 0 (see Appendix).
Check your understanding

1. Let 0 ≤ x < 1, Consider the sequence (bn), where bn = −xn. Circle all that apply
to (bn).

monotonic bounded convergent

2. Let x > 1 and define the sequence (cn), where cn = xn. Circle all that apply to
(cn).

monotonic bounded convergent

3. Let x < −1 and define the sequence (dn), where dn = xn. Circle all that apply
to (dn).

monotonic bounded convergent
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Let 0 ≤ x < 1

◇ − an = xn

⋆ − bn = −xn

Now, suppose that −1 < x < 0. Circle the points on the above graph corre-
sponding to the sequence (xn) = (x,x2, x3, . . .).

Remark 1.4. In general, a sequence (an) is a geometric progression if there is a
real number x satisfying

an+1
an

= x, for every n = 1,2,3, . . ..

Every geometric sequence is of the form

(cx, cx2, cx3, . . .)

for some constant c and real number x.

Create your own Theorem!
Geometric Progression Theorem (GPT)

Let x be a real number, c a constant, and consider the geometric progression
(cxn) = (cx, cx2, xc3, . . .).

1. Let −1 < x < 1. Then, (cxn) is and
limn→∞ xn = .

2. Let ∣x∣ > 1. Then, (cxn) is .

3. Let x = 1. Then, (cxn) is and limn→∞ xn = .

4. Let x = −1. Then, (cxn) is .

Use some of the following phrases/symbols to complete the proof of the first
proposition above.

‘Squeeze Theorem’ ‘Monotonic Bounded Theorem’ ‘decreasing’ 0
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‘convergent’ ‘divergent’ ‘increasing’ ‘bounded above’ 1 ∞

Proof of 1.
Let −1 < x < 1 and write r = ∣x∣. By the ,

the sequences (crn) and (−crn) are . Moreover,

lim
n→∞

crn = lim
n→∞

−crn = .

Hence, using the , the sequence (cxn) is

and limn→∞ cxn = .

Example 1.5. 1. Consider the sequence

(−
2

3
,
4

9
,−

8

27
,
16

81
, . . .)

This is a geometric progression (xn) with x = −2
3 . Hence, since −1 < x < 1, the

sequence is convergent with limit 0, by the Geometric Progression Theorem.

2. Consider the sequence (an), where an =
4n

3n+2 . This is a geometric progression
since

an+1
an

=
4n+1

3n+3
3n+2

4n
=

4

3
, for n = 1,2,3 . . .

In fact, we observe that

an =
4n

3n+2
=

1

32

4n

3n
=

1

9
(

4

3
)
n

so that (an) = (cxn), with c = 1
9 , x = 4

3 . By the Geometric Progression Theorem,
the sequence is divergent.

Appendix: We will show that the convergent sequence (xn), where 0 ≤ x < 1,
has limit 0.

Denote the limit of the convergent sequence (xn) by L: we want to show that
L = 0. We note the following crucial observation:

the limit of the convergent sequence (an) = (x,x2, x3, x4, . . .) is equal to the limit of
the convergent sequence (bn) = (x2, x3, x4, x5, . . .)

We have bn = xan, for each n = 1,2,3, . . .. Thus, using the limit laws, we have

L = lim
n→∞

bn = lim
n→∞

(xan) = x ( lim
n→∞

an) = xL

Ô⇒ L − xL = 0 Ô⇒ L(x − 1) = 0

However, we chose 0 ≤ x < 1 so that the only way this last equality can hold is if
L = 0. Hence,

lim
n→∞

xn = 0, whenever 0 ≤ x < 1.
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