Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 21 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: The Monotonic Bounded Theorem
Today we will deduce a useful theorem, the Monotonic Bounded Theorem (or MB Theorem).

1 Monotonic sequences

Definition 1.1. Let $\left(a_{n}\right)$ be a sequence that is either increasing or decreasing (or both!). Then, we say that (a_{n}) is monotonic.
Check your understanding

1. Draw the graphs of three (different) monotonic, bounded sequences $\left(a_{n}\right),\left(b_{n}\right)$, $\left(c_{n}\right)$.

2. What common feature do the sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ possess?

Create your own Theorem!

Complete the following statements
Monotonic+Bounded Theorem
Let $\left(a_{n}\right)$ be a monotonic and bounded sequence. Then, $\left(a_{n}\right)$ is

More generally,

- if $\left(a_{n}\right)$ is decreasing and \qquad then $\left(a_{n}\right)$ is
\qquad -.
- if $\left(a_{n}\right)$ is increasing and \qquad then $\left(a_{n}\right)$ is
\qquad _.

Example 1.2. 1. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{1}{2^{n}}$. Then, for any natural number n,

$$
a_{n+1}=\frac{1}{2^{n+1}}=\frac{1}{2} a_{n}<a_{n} .
$$

Hence, $\left(a_{n}\right)$ is (strictly) decreasing. Also, $a_{n}>0$, for every n, so that $\left(a_{n}\right)$ is bounded below. Hence, by the Monotonic Bounded Theorem the sequence $\left(a_{n}\right)$ is convergent.
2. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\cos \left(\frac{\pi(n-1)}{2 n}\right)$. Note that

$$
0 \leq \frac{\pi(n-1)}{2 n}=\frac{\pi}{2}\left(1-\frac{1}{n}\right)<\frac{\pi}{2}\left(1-\frac{1}{n+1}\right)<\frac{\pi}{2}
$$

Hence, since the (differentiable) function $\cos (x)$ is decreasing on the interval $[0, \pi]$, the sequence $\left(a_{n}\right)$ is decreasing. Moreover, a_{n} is bounded below (by -1 , say) so that (a_{n}) is convergent, by the Monotonic Bounded Theorem.

Remark 1.3. 1. The Monotonic+Bounded Theorem is a little strange: it tells us that a monotonic, bounded sequence is convergent but does not say say how to find $\lim _{n \rightarrow \infty} a_{n}$! Compare this with the Squeeze Theorem where we not only show that a sequence is convergent but also obtain its limit.
2. It can be tricky to check whether a sequence is monotonic, in general. When we are introduced to the technique known as mathematical induction, we will have a tool to determine montonicity for a larger class of sequences.

Check your understanding

Consider the sequence $\left(a_{n}\right)$, where

$$
a_{n}=\frac{n}{2^{n}}
$$

1. Write down the first five terms of $\left(a_{n}\right)$.
2. Do you think $\left(a_{n}\right)$ is convergent/divergent? Provide an explanation in support of your claim.

We will now try to understand the behaviour of the sequence more thoroughly.
3. Show that $2 n \geq n+1$, whenever $n \geq 1$.
4. Observe that we can write $a_{n}=\frac{2 n}{2^{n+1}}$, for any $n=1,2,3, \ldots$. Using this observation, and the previous problem, show that $a_{n} \geq a_{n+1}$, for every $n=1,2,3, \ldots$.
5. Use the Monotonic Bounded Theorem to explain why $\left(a_{n}\right)$ is convergent.
6. Does your argument determine the limit of the convergent sequence $\left(a_{n}\right)$?

Important Example: Suppose that $0 \leq x \leq 1$. Consider the sequence (a_{n}), where $a_{n}=x^{n}$. Such a sequence is called a geometric progression. For each $n=1,2,3, \ldots$

$$
\begin{aligned}
a_{n+1}-a_{n}= & x^{n+1}-x^{n}=x^{n}(x-1) \leq 0, \quad \text { because } 0 \leq x \leq 1 \\
& \Longrightarrow \quad a_{n+1} \leq a_{n}, \quad n=1,2,3, \ldots
\end{aligned}
$$

Hence, $\left(a_{n}\right)$ is \qquad . Also, $\left(a_{n}\right)$ is bounded: for each $n=1,2,3, \ldots$, we have \qquad . Therefore, by the \qquad Theorem the
sequence $\left(a_{n}\right)$ is \qquad .
In fact, $\lim _{n \rightarrow \infty} a_{n}=0$ (see Appendix).
Check your understanding

1. Let $0 \leq x<1$, Consider the sequence $\left(b_{n}\right)$, where $b_{n}=-x^{n}$. Circle all that apply to $\left(b_{n}\right)$.

monotonic bounded convergent

2. Let $x>1$ and define the sequence $\left(c_{n}\right)$, where $c_{n}=x^{n}$. Circle all that apply to $\left(c_{n}\right)$.
monotonic bounded convergent
3. Let $x<-1$ and define the sequence $\left(d_{n}\right)$, where $d_{n}=x^{n}$. Circle all that apply to $\left(d_{n}\right)$.

monotonic

bounded

Now, suppose that $-1<x<0$. Circle the points on the above graph corresponding to the sequence $\left(x^{n}\right)=\left(x, x^{2}, x^{3}, \ldots\right)$.

Remark 1.4. In general, a sequence $\left(a_{n}\right)$ is a geometric progression if there is a real number x satisfying

$$
\frac{a_{n+1}}{a_{n}}=x, \quad \text { for every } n=1,2,3, \ldots
$$

Every geometric sequence is of the form

$$
\left(c x, c x^{2}, c x^{3}, \ldots\right)
$$

for some constant c and real number x.

Create your own Theorem!
Geometric Progression Theorem (GPT)
Let x be a real number, c a constant, and consider the geometric progression $\left(c x^{n}\right)=\left(c x, c x^{2}, x c^{3}, \ldots\right)$.

1. Let $-1<x<1$. Then, $\left(c x^{n}\right)$ is \qquad and $\lim _{n \rightarrow \infty} x^{n}=$ \qquad -.
2. Let $|x|>1$. Then, $\left(c x^{n}\right)$ is \qquad .
3. Let $x=1$. Then, $\left(c x^{n}\right)$ is \qquad and $\lim _{n \rightarrow \infty} x^{n}=$ \qquad .
4. Let $x=-1$. Then, $\left(c x^{n}\right)$ is \qquad .

Use some of the following phrases/symbols to complete the proof of the first proposition above.

Proof of 1.
Let $-1<x<1$ and write $r=|x|$. By the \qquad _,
the sequences $\left(c r^{n}\right)$ and $\left(-c r^{n}\right)$ are \qquad . Moreover,

$$
\lim _{n \rightarrow \infty} c r^{n}=\lim _{n \rightarrow \infty}-c r^{n}=
$$

\qquad .

Hence, using the \qquad , the sequence $\left(c x^{n}\right)$ is \qquad and $\lim _{n \rightarrow \infty} c x^{n}=$ \qquad .

Example 1.5. 1. Consider the sequence

$$
\left(-\frac{2}{3}, \frac{4}{9},-\frac{8}{27}, \frac{16}{81}, \ldots\right)
$$

This is a geometric progression $\left(x^{n}\right)$ with $x=-\frac{2}{3}$. Hence, since $-1<x<1$, the sequence is convergent with limit 0, by the Geometric Progression Theorem.
2. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{4^{n}}{3^{n+2}}$. This is a geometric progression since

$$
\frac{a_{n+1}}{a_{n}}=\frac{4^{n+1}}{3^{n+3}} \frac{3^{n+2}}{4^{n}}=\frac{4}{3}, \quad \text { for } n=1,2,3 \ldots
$$

In fact, we observe that

$$
a_{n}=\frac{4^{n}}{3^{n+2}}=\frac{1}{3^{2}} \frac{4^{n}}{3^{n}}=\frac{1}{9}\left(\frac{4}{3}\right)^{n}
$$

so that $\left(a_{n}\right)=\left(c x^{n}\right)$, with $c=\frac{1}{9}, x=\frac{4}{3}$. By the Geometric Progression Theorem, the sequence is divergent.

Appendix: We will show that the convergent sequence (x^{n}), where $0 \leq x<1$, has limit 0.

Denote the limit of the convergent sequence $\left(x^{n}\right)$ by L : we want to show that $L=0$. We note the following crucial observation:
the limit of the convergent sequence $\left(a_{n}\right)=\left(x, x^{2}, x^{3}, x^{4}, \ldots\right)$ is equal to the limit of the convergent sequence $\left(b_{n}\right)=\left(x^{2}, x^{3}, x^{4}, x^{5}, \ldots\right)$

We have $b_{n}=x a_{n}$, for each $n=1,2,3, \ldots$ Thus, using the limit laws, we have

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(x a_{n}\right)=x\left(\lim _{n \rightarrow \infty} a_{n}\right)=x L \\
& \Longrightarrow \quad L-x L=0 \quad \Longrightarrow \quad L(x-1)=0
\end{aligned}
$$

However, we chose $0 \leq x<1$ so that the only way this last equality can hold is if $L=0$. Hence,

$$
\lim _{n \rightarrow \infty} x^{n}=0, \quad \text { whenever } 0 \leq x<1
$$

