Calculus II: Spring 2018 Contact: gmelvin@middlebury.edu ## February 16 Lecture SUPPLEMENTARY REFERENCES: - Single Variable Calculus, Stewart, 7th Ed.: Section 11.1. - Calculus, Spivak, 3rd Ed.: Section 22. - AP Calculus BC, Khan Academy: Infinite sequences. SEQUENCES: LIMITS 1 Some sequences Recall the sequences from February 15 lecture: $$(a_n), (b_n), (c_n)$$ where $$a_n = 2n + (-1)^n$$, $b_n = 1 - \frac{1}{n^2}$, $c_n = 2\left(\frac{1 + (-1)^n}{n}\right)$ CHECK YOUR UNDERSTANDING For each sequence above, give a property P of real numbers so that P holds for that function as $n \to \infty$. $$(a_n)$$ $P:$ $y > 1$ $$(b_n)$$ $P:$ $y < 1$ $$(c_n)$$ P: $|y| < 0.0001$ 2 Limits We introduce the fundamental notion of a limit of a sequence. This will build upon our discussion of the phrase 'as $n \to \infty$ '. Consider the increasing and bounded sequence (a_n) , where $a_n = 10 - \frac{10}{n}$. Draw the graph of this sequence below and draw the horizontal line y = 10. TRUE/FALSE 1. If P is the property P: 9 < y < 11 then P holds for (a_n) as $n \to \infty$. 7 2. If P is the property P: 'the distance from y to 10 is less than 0.01' then P holds for (a_n) as $n \to \infty$. 3. If P is the property P: 9.9999 < y < 10.0001 then P holds for (a_n) as $n \to \infty$. 4. If P is the property $P: 10 - \frac{1}{2^{100}} < y < 10 + \frac{1}{2^{100}}$ then P holds for (a_n) as $n \to \infty$. 5. Let $\varepsilon > 0$ be any positive real number. If P is the property P: 'the distance from y to 10 is less than ε ' then P holds for (a_n) as $n \to \infty$. We will now formalise the situation observed above. Let $\varepsilon > 0$ be a positive real number and let L be an arbitrary real number. We define $D_{\varepsilon,L}$ (note that this property depends upon both ε and L) to be the property of real numbers y, $D_{\varepsilon,L}$: 'the distance from y to L is less than ε ' Definition 2.1. Let (a_n) be a sequence. We say that (a_n) is a convergent sequence with limit L if, for any $\epsilon > 0$, the property $P_{\epsilon,L}$ holds for (a_n) as $n \to \infty$. Equivalently, We say that (a_n) is a convergent sequence with limit L if, for any $\epsilon > 0$, there is some natural number N such that $$n \ge N \implies |a_n - L| < \varepsilon.$$ If (a_n) is not convergent then we say that (a_n) is divergent. - Remark 2.2. 1. Recall that, for real numbers x, y, the non-negative real number |x-y| is the (unsigned) distance between x and y. Thus, the mathematical definition given above is to be read as ' (a_n) is convergent with limit L if, for any $\varepsilon > 0$, the property $D_{\varepsilon,L}$ holds for (a_n) as $n \to \infty$.' - 2. If (a_n) is convergent with limit L then we write $$\lim_{n\to\infty} a_n = L, \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$ - 3. Suppose that f(x) is a function defined for all $1 \le x \le \infty$. If (a_n) is a sequence so that $a_n = f(n)$, for $n = 1, 2, 3, \ldots$, then $\lim_{n \to \infty} a_n = L$ precisely whenever $\lim_{x \to \infty} f(x) = L$. - 4. In this class, the adjective divergent is synonymous with not convergent. ## CHECK YOUR UNDERSTANDING 1. Which of the sequences (a_n) , (b_n) , (c_n) above are convergent? For those that \cdot are convergent, what do you think the limits are? 2. Consider the graphs of the following sequences. Identify those sequences that are convergent and, if possible, their limits. **Example 2.3.** Consider the sequence (a_n) , where $a_n = \frac{1}{n}$. We will show directly that (a_n) is convergent with limit L = 0. Suppose we are given some fixed $\varepsilon > 0$. To verify that (a_n) satisfies the statement of Definition 2.1 we have to find an N such that, for each $n \ge N$, we necessarily have $$|a_n-0|=\left|\frac{1}{n}\right|<\varepsilon.$$ Observe that, since $a_n > 0$ for all n = 1, 2, 3, ..., we have $|a_n| = a_n$. Hence, we need N so that, for each $n \ge N$, we necessarily have $$\frac{1}{n}=a_n=|a_n|<\varepsilon.$$ Rearranging the above inequality, if we take a natural number $N>\frac{1}{\varepsilon}$ then $$n \geq N \quad \Longrightarrow \quad n \geq N > \frac{1}{\varepsilon} \quad \Longrightarrow \quad |a_n| = \frac{1}{n} < \varepsilon.$$ Thus, we have shown directly that $\lim_{n\to\infty}\frac{1}{n}=0$ (i.e. that (a_n) satisfies the condition required of Definition 2.1). ## Corresponding Table: Limit Laws for Sequences: Let (a_n) , (b_n) be convergent sequences, c a constant. Then, - 1. $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$ - 2. $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$, - 3. $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} b_n),$ - 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$, whenever $\lim_{n\to\infty} b_n \neq 0$, - 5. $\lim_{n\to\infty} a_n^r = (\lim_{n\to\infty} a_n)^r$, if r>0 and $a_n>0$, for $n=1,2,3,\ldots$ - 6. Let f(x) be a continuous function whose domain contains $\{a_n\}_{n\geq 1}$. Then, $$f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)$$