

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 16 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

SEQUENCES: LIMITS

1 Some sequences Recall the sequences from February 15 lecture:

$$(a_n), (b_n), (c_n)$$

where

CHECK YOUR UNDERSTANDING

For each sequence above, give a property P of real numbers so that P holds for that function as $n \to \infty$.

 (a_n) P:

 (b_n) P:

 (c_n) P:

2 Limits We introduce the fundamental notion of a limit of a sequence. This will build upon our discussion of the phrase 'as $n \to \infty$ '.

Consider the increasing and bounded sequence (a_n) , where $a_n = 10 - \frac{10}{n}$. Draw the graph of this sequence below and draw the horizontal line y = 10.

TRUE/FALSE

- 1. If P is the property P: 9 < y < 11 then P holds for (a_n) as $n \to \infty$.
- 2. If P is the property P: 'the distance from y to 10 is less than 0.01' then P holds for (a_n) as $n \to \infty$.
- 3. If P is the property P: 9.9999 < y < 10.0001 then P holds for (a_n) as $n \to \infty$.
- 4. If P is the property $P: 10 \frac{1}{2^{100}} < y < 10 + \frac{1}{2^{100}}$ then P holds for (a_n) as $n \to \infty$.
- 5. Let $\varepsilon > 0$ be any positive real number. If P is the property

P: 'the distance from y to 10 is less than ε '

then P holds for (a_n) as $n \to \infty$.

We will now formalise the situation observed above.

Let $\varepsilon > 0$ be a positive real number and let L be an arbitrary real number. We define $D_{\varepsilon,L}$ (note that this property depends upon both ε and L) to be the property of real numbers y,

 $D_{\varepsilon,L}$: 'the distance from y to L is less than ε '

Definition 2.1. Let (a_n) be a sequence.

We say that (a_n) is a **convergent sequence with limit** L if, for any $\epsilon > 0$, the property $P_{\epsilon,L}$ holds for (a_n) as $n \to \infty$.

Equivalently,

We say that (a_n) is a **convergent sequence with limit** L if, for any $\epsilon > 0$, there is some natural number N such that

 $n \ge N \implies |a_n - L| < \varepsilon.$

If (a_n) is not convergent then we say that (a_n) is **divergent**.

- **Remark 2.2.** 1. Recall that, for real numbers x, y, the non-negative real number |x y| is the (unsigned) distance between x and y. Thus, the mathematical definition given above is to be read as ' (a_n) is convergent with limit L if, for any $\varepsilon > 0$, the property $D_{\varepsilon,L}$ holds for (a_n) as $n \to \infty$.'
 - 2. If (a_n) is convergent with limit L then we write

$$\lim_{n \to \infty} a_n = L, \qquad \text{or} \qquad a_n \to L \text{ as } n \to \infty.$$

- 3. Suppose that f(x) is a function defined for all $1 \le x \le \infty$. If (a_n) is a sequence so that $a_n = f(n)$, for $n = 1, 2, 3, \ldots$, then $\lim_{n \to \infty} a_n = L$ precisely whenever $\lim_{x \to \infty} f(x) = L$.
- 4. In this class, the adjective divergent is synonymous with not convergent.

CHECK YOUR UNDERSTANDING

1. Which of the sequences (a_n) , (b_n) , (c_n) above are convergent? For those that are convergent, what do you think the limits are?

(a) (a_n) :

2. Consider the graphs of the following sequences. Identify those sequences that are convergent and, if possible, their limits.

Example 2.3. Consider the sequence (a_n) , where $a_n = \frac{1}{n}$. We will show directly that (a_n) is convergent with limit L = 0.

Suppose we are given some fixed $\varepsilon > 0$. To verify that (a_n) satisfies the statement of Definition 2.1 we have to find an N such that, for each $n \ge N$, we necessarily have

$$|a_n - 0| = \left|\frac{1}{n}\right| < \varepsilon.$$

Observe that, since $a_n > 0$ for all n = 1, 2, 3, ..., we have $|a_n| = a_n$. Hence, we need N so that, for each $n \ge N$, we necessarily have

$$\frac{1}{n} = a_n = |a_n| < \varepsilon$$

Rearranging the above inequality, if we take a natural number $N > \frac{1}{\epsilon}$ then

$$n \ge N \implies n \ge N > \frac{1}{\varepsilon} \implies |a_n| = \frac{1}{n} < \varepsilon.$$

Thus, we have shown directly that $\lim_{n\to\infty} \frac{1}{n} = 0$ (i.e. that (a_n) satisfies the condition required of Definition 2.1).

Corresponding Table:

Limit Laws for Sequences: Let (a_n) , (b_n) be convergent sequences, c a constant. Then,

- 1. $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$,
- 2. $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$,
- 3. $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} b_n),$
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$, whenever $\lim_{n\to\infty} b_n \neq 0$,
- 5. $\lim_{n \to \infty} a_n^r = (\lim_{n \to \infty} a_n)^r$, if r > 0 and $a_n > 0$, for n = 1, 2, 3, ...
- 6. Let f(x) be a continuous function whose domain contains $\{a_n\}_{n\geq 1}$. Then,

$$f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)$$