
Calculus II: Spring 2018
Contact: gmelvin@middlebury.edu

February 16 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: limits

1 Some sequences Recall the sequences from February 15 lecture:

(an), (bn), (cn)

where

an = 2n + (−1)n, bn = 1 −
1

n2
, cn = 2(

1 + (−1)n

n
)
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Check your understanding
For each sequence above, give a property P of real numbers so that P holds for that
function as n→∞.

(an) P ∶

(bn) P ∶

(cn) P ∶
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2 Limits We introduce the fundamental notion of a limit of a sequence. This will
build upon our discussion of the phrase ’as n→∞’.

Consider the increasing and bounded sequence (an), where an = 10 − 10
n . Draw the

graph of this sequence below and draw the horizontal line y = 10.

n

y

True/False

1. If P is the property P ∶ 9 < y < 11 then P holds for (an) as n→∞.

2. If P is the property P ∶ ‘the distance from y to 10 is less than 0.01’ then P
holds for (an) as n→∞.

3. If P is the property P ∶ 9.9999 < y < 10.0001 then P holds for (an) as n→∞.

4. If P is the property P ∶ 10− 1
2100 < y < 10+ 1

2100 then P holds for (an) as n→∞.

5. Let ε > 0 be any positive real number. If P is the property

P ∶ ‘the distance from y to 10 is less than ε’

then P holds for (an) as n→∞.

We will now formalise the situation observed above.

Let ε > 0 be a positive real number and let L be an arbitrary real number. We define
Dε,L (note that this property depends upon both ε and L) to be the property of real
numbers y,

Dε,L ∶ ‘the distance from y to L is less than ε’

Definition 2.1. Let (an) be a sequence.

We say that (an) is a convergent sequence with limit L if, for any ε > 0,
the property Pε,L holds for (an) as n→∞.

Equivalently,

We say that (an) is a convergent sequence with limit L if, for any ε > 0,
there is some natural number N such that

n ≥ N Ô⇒ ∣an −L∣ < ε.

If (an) is not convergent then we say that (an) is divergent.
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Remark 2.2. 1. Recall that, for real numbers x, y, the non-negative real number
∣x − y∣ is the (unsigned) distance between x and y. Thus, the mathematical
definition given above is to be read as ‘(an) is convergent with limit L if, for
any ε > 0, the property Dε,L holds for (an) as n→∞.’

2. If (an) is convergent with limit L then we write

lim
n→∞

an = L, or an → L as n→∞.

3. Suppose that f(x) is a function defined for all 1 ≤ x ≤ ∞. If (an) is a sequence
so that an = f(n), for n = 1,2,3, . . ., then limn→∞ an = L precisely whenever
limx→∞ f(x) = L.

4. In this class, the adjective divergent is synonymous with not convergent.

Check your understanding

1. Which of the sequences (an), (bn), (cn) above are convergent? For those that
are convergent, what do you think the limits are?

(a) (an):

convergent divergent

(if applicable)
L =

(b) (bn):

convergent divergent

(if applicable)
L =

(c) (cn):

convergent divergent

(if applicable)
L =

2. Consider the graphs of the following sequences. Identify those sequences that
are convergent and, if possible, their limits.

n

1

−1

●

●

●

●

●

●

●

●

●
n0

●

●
●

● ●
●
● ● ● ● n

5

●

●

●

●

●
●
●
●
● ●

3



Example 2.3. Consider the sequence (an), where an = 1
n . We will show directly

that (an) is convergent with limit L = 0.
Suppose we are given some fixed ε > 0. To verify that (an) satisfies the statement

of Definition 2.1 we have to find an N such that, for each n ≥N, we necessarily have

∣an − 0∣ = ∣
1

n
∣ < ε.

Observe that, since an > 0 for all n = 1,2,3, . . ., we have ∣an∣ = an. Hence, we need N
so that, for each n ≥ N , we necessarily have

1

n
= an = ∣an∣ < ε.

Rearranging the above inequality, if we take a natural number N > 1
ε then

n ≥ N Ô⇒ n ≥ N >
1

ε
Ô⇒ ∣an∣ =

1

n
< ε.

Thus, we have shown directly that limn→∞
1
n = 0 (i.e. that (an) satisfies the

condition required of Definition 2.1).

Corresponding Table:

Limit Laws for Sequences: Let (an), (bn) be convergent sequences, c a constant.
Then,

1. limn→∞(an ± bn) = limn→∞ an ± limn→∞ bn,

2. limn→∞ can = c limn→∞ an,

3. limn→∞ anbn = (limn→∞ an) (limn→∞ an) (limn→∞ bn),

4. limn→∞
an
bn

= limn→∞ an
limn→∞ bn

, whenever limn→∞ bn ≠ 0,

5. limn→∞ arn = (limn→∞ an)
r
, if r > 0 and an > 0, for n = 1,2,3, . . ..

6. Let f(x) be a continuous function whose domain contains {an}n≥1. Then,

f( lim
n→∞

an) = lim
n→∞

f(an)

4


