Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 16 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: Limits

1 Some sequences Recall the sequences from February 15 lecture:

$$
\left(a_{n}\right), \quad\left(b_{n}\right), \quad\left(c_{n}\right)
$$

where

$$
a_{n}=2 n+(-1)^{n}, \quad b_{n}=1-\frac{1}{n^{2}}, \quad c_{n}=2\left(\frac{1+(-1)^{n}}{n}\right)
$$

Check your understanding
For each sequence above, give a property P of real numbers so that P holds for that function as $n \rightarrow \infty$.
$\left(a_{n}\right) \quad P$:
$\left(b_{n}\right) \quad P:$
$\left(c_{n}\right) \quad P:$

2 Limits We introduce the fundamental notion of a limit of a sequence. This will build upon our discussion of the phrase 'as $n \rightarrow \infty$ '.

Consider the increasing and bounded sequence $\left(a_{n}\right)$, where $a_{n}=10-\frac{10}{n}$. Draw the graph of this sequence below and draw the horizontal line $y=10$.

True/False

1. If P is the property $P: 9<y<11$ then P holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.
2. If P is the property P : 'the distance from y to 10 is less than 0.01 ' then P holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.
3. If P is the property $P: 9.9999<y<10.0001$ then P holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.
4. If P is the property $P: 10-\frac{1}{2^{100}}<y<10+\frac{1}{2^{100}}$ then P holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.
5. Let $\varepsilon>0$ be any positive real number. If P is the property

$$
P: \text { 'the distance from } y \text { to } 10 \text { is less than } \varepsilon \text { ' }
$$

then P holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.
We will now formalise the situation observed above.
Let $\varepsilon>0$ be a positive real number and let L be an arbitrary real number. We define $D_{\varepsilon, L}$ (note that this property depends upon both ε and L) to be the property of real numbers y,

$$
D_{\varepsilon, L}: \text { 'the distance from } y \text { to } L \text { is less than } \varepsilon \text { ' }
$$

Definition 2.1. Let $\left(a_{n}\right)$ be a sequence.
We say that $\left(a_{n}\right)$ is a convergent sequence with limit L if, for any $\epsilon>0$, the property $P_{\epsilon, L}$ holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.

Equivalently,

We say that $\left(a_{n}\right)$ is a convergent sequence with limit L if, for any $\epsilon>0$, there is some natural number N such that

$$
n \geq N \quad \Longrightarrow \quad\left|a_{n}-L\right|<\varepsilon .
$$

If $\left(a_{n}\right)$ is not convergent then we say that $\left(a_{n}\right)$ is divergent.

Remark 2.2. 1. Recall that, for real numbers x, y, the non-negative real number $|x-y|$ is the (unsigned) distance between x and y. Thus, the mathematical definition given above is to be read as ' $\left(a_{n}\right)$ is convergent with limit L if, for any $\varepsilon>0$, the property $D_{\varepsilon, L}$ holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.'
2. If $\left(a_{n}\right)$ is convergent with limit L then we write

$$
\lim _{n \rightarrow \infty} a_{n}=L, \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty .
$$

3. Suppose that $f(x)$ is a function defined for all $1 \leq x \leq \infty$. If $\left(a_{n}\right)$ is a sequence so that $a_{n}=f(n)$, for $n=1,2,3, \ldots$, then $\lim _{n \rightarrow \infty} a_{n}=L$ precisely whenever $\lim _{x \rightarrow \infty} f(x)=L$.
4. In this class, the adjective divergent is synonymous with not convergent.

Check your understanding

1. Which of the sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ above are convergent? For those that are convergent, what do you think the limits are?
(a) $\left(a_{n}\right)$:
convergent divergent
(if applicable)

$$
L=
$$

\qquad
(b) $\left(b_{n}\right)$:
convergent divergent
(if applicable)

$$
L=
$$

\qquad
(c) $\left(c_{n}\right)$:
convergent
divergent
(if applicable)

$$
L=
$$

\qquad
2. Consider the graphs of the following sequences. Identify those sequences that are convergent and, if possible, their limits.

Example 2.3. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{1}{n}$. We will show directly that $\left(a_{n}\right)$ is convergent with limit $L=0$.

Suppose we are given some fixed $\varepsilon>0$. To verify that $\left(a_{n}\right)$ satisfies the statement of Definition 2.1 we have to find an N such that, for each $n \geq \mathrm{N}$, we necessarily have

$$
\left|a_{n}-0\right|=\left|\frac{1}{n}\right|<\varepsilon
$$

Observe that, since $a_{n}>0$ for all $n=1,2,3, \ldots$, we have $\left|a_{n}\right|=a_{n}$. Hence, we need N so that, for each $n \geq N$, we necessarily have

$$
\frac{1}{n}=a_{n}=\left|a_{n}\right|<\varepsilon .
$$

Rearranging the above inequality, if we take a natural number $N>\frac{1}{\varepsilon}$ then

$$
n \geq N \quad \Longrightarrow \quad n \geq N>\frac{1}{\varepsilon} \quad \Longrightarrow \quad\left|a_{n}\right|=\frac{1}{n}<\varepsilon .
$$

Thus, we have shown directly that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ (i.e. that $\left(a_{n}\right)$ satisfies the condition required of Definition 2.1).

Corresponding Table:

Limit Laws for Sequences: Let $\left(a_{n}\right),\left(b_{n}\right)$ be convergent sequences, c a constant. Then,

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$,
2. $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$,
3. $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$,
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, whenever $\lim _{n \rightarrow \infty} b_{n} \neq 0$,
5. $\lim _{n \rightarrow \infty} a_{n}^{r}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{r}$, if $r>0$ and $a_{n}>0$, for $n=1,2,3, \ldots$.
6. Let $f(x)$ be a continuous function whose domain contains $\left\{a_{n}\right\}_{n \geq 1}$. Then,

$$
f\left(\lim _{n \rightarrow \infty} a_{n}\right)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)
$$

