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SEQUENCES: AN INTRODUCTION

1 The phrase ‘as n goes to infinity’

Definition 1.1. Let f(n) be a real-valued function, where n is a variable assigned
natural numbers only. Let P be a property. We say that property P holds for
f(n) as n goes to infinity if f(n) satisfies Condition (I) for property P. We will
often write property P holds for f(n) as n — .

As a rigorous mathematical statement we have the following:

property P holds for f(n) as n — oo if there exists a natural
number N such that, for every n > N, property P holds for f(n).

This means that when we form the table

n 1 2 3 4 5 6 - N N+l
f) [ fQA) f2) fB) f(4) f(B) f(6) - f(N) f(N+1)
T/F * * * * * * T T N

we can go far enough out to the right (i.e. there exists a natural number N) and find
a place where there are only Ts in front of us (for every n > N, property P holds for

f(n)).

2 Sequences The visual representation we have seen for real-valued functions f(n)
leads us to the following Definition.

Definition 2.1. Let f(n) be a real-valued function, where n is a variable assigned
natural numbers only. The (ordered) collection of all outputs of the function f(n) is
called a sequence.

A sequence should be considered as an infinitely long list:

1 2 3 4 - n
Fy @) f@) f@) - fn)

We will frequently denote a sequence

(an)nz1 = (a1, a2, 03,04, . .. Ay, - ..)

where a,, = f(n). In particular, we care about how we order the outputs of f(n).
We will call a,, the n'* term of the sequence.
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Example 2.2. 1. Let f(n)=n?-1. Then, the corresponding sequence is
(0,3,8,15,24,35,...)

2. Let f(n) =cos(n). Then, the corresponding sequence is

(cos(1),cos(2),cos(3),cos(4),...)

Remark 2.3. (a) Sequences will be denoted (a,)ns1, or simply (a, ), where
we assume implicitly that a,, = f(n) for some real-valued function f whose
domain is N.

(b) Given a sequence (a,) such that a, = f(n), it is often useful to visualise
the graph of f(n) (in a similar manner as the above exercise). We will
also call the graph of f(n) the graph of (a,).

(c) Identifying a sequence (a,) with a real-valued function f(n) allows us
to make sense of the following statement, where P is a property of real
numbers:

property P holds for (a,) as n - co.

3. Sequences can be defined recursively - this means the n** term is defined
as a function of previous terms. For example, the Fibonacci sequence (f,) is
defined as follows:

f1:f2:17 fn:fn—1+fn—2, n>3
The first few terms of (f,,) are

1,1,2,3, ; ; , e

4. Sequences can be defined without nice formulas: for example, a,, = p,, = nt"
prime numbeif] The sequence is

(2,3,5,7,11,13,17,19,23,29, 31, ...)

Recently (January 2018), the largest prime number was discovered: it has
23,249,425 digits and is the natural number

467333 ... — 23,249,413 digits missing — ...179071

Despite knowing that this number is prime, we do not (yet) know where it
would appear in the above sequence.

5. Sequences can be defined using (seemingly) ugly formulas: for example,
a, = area of K(n), the n'» Koch snowflake.

!Note: there is no known formula for prime numbers. If you can find one, and prove it is
correct, then I will give you an A (and you will also be granted a PhD, and a Professorship at
Harvard/Princeton/MIT).



CHECK YOUR UNDERSTANDING
Consider the following real-valued functions

1+ (—1)”).

n

g(n) =20+ (-1)". h(n)=1- % k(n) = 2(

1. Write down the first five terms of the corresponding sequence.

2. Plot the graph of the functions above.
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3. What general features do the graphs exhibit? Describe as many as you can.

4. For each function above, give a property P of real numbers so that P holds for
that function as n — oo.

We now introduce some terminology for sequences.
Definition 2.4. Let (a,) be a sequence.

1. The sequence (a,) is increasing if a; < ay < ag < -+ < a, < ---. The sequence
(a,) is strictly increasing if a; < as < a3z <---<a, <--
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2. The sequence (a,) is decreasing if a; > as > az > - > a,, > ---. The sequence
(a,) is strictly decreasing if a; > ay > ag—>a, > .

3. The sequence (a,) is bounded below if there exists a real number m such
that m < a,, for every n. The sequence (a,) is bounded above if there exists
a real number M such that a, < M, for every n. A sequence (a,) is bounded
if it is bounded above and below. A sequence (a,) is unbounded if it is not
bounded.

Example 2.5. The sequence (a,), where a,, = % is strictly decreasing. This can be
shown as follows: we must show that a, > a,,1, for every n =1,2,3,... (i.e. a; > ay,
as > as,...etc.). Indeed,

1 1 1
= Qe = — — = >0, fi > 1.
n = An+l n n+l n(n+1) orn
Hence, a,, > a,.1, whenever n > 1.
This sequence is bounded below by and bounded above by . Hence, the

sequence is

CHECK YOUR UNDERSTANDING

1. For the functions g(n),k(n) given above, state (no need to prove) which of
the above attributes - (strictly) increasing/decreasing, (un)bounded - the cor-
responding sequences possess.

2. Let (a,) be an increasing/decreasing sequence. Draw two different possible
shapes of the graph of (a,).

3. Let (a,) be a bounded sequence. Draw two different possible shapes of the
graph of (a,).




3 Limits We introduce the fundamental notion of a limit of a sequence. This will
build upon our discussion of the phrase 'as n — oo’.

Consider the increasing and bounded sequence (a, ), where a, = 10 - 1n—0. Draw the
graph of this sequence below and draw the horizontal line y = 10.

Y
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TRUE/FALSE
1. If P is the property P:9 <y < 11 then P holds for (a,) as n — oo.

2. If P is the property P : ‘the distance from y to 10 is less than 0.01” then P
holds for (a,) as n — oo.

3. If P is the property P :9.9999 < y < 10.0001 then P holds for (a,) as n — oo.
4. If P is the property P :10- 21% <y<10+ 21% then P holds for (a,) as n — oo.

5. Let £ > 0 be any positive real number. If P is the property
P : ‘the distance from y to 10 is less than €’

then P holds for (a,) as n — oo.

We will now formalise the situation observed above.

Let £ > 0 be a positive real number and let L be an arbitrary real number. We define
D. , (note that this property depends upon both € and L) to be the property of real
numbers ¥,

D, 1, : ‘the distance from y to L is less than €’

Definition 3.1. Let (a,) be a sequence. We say that (a,) is a convergent se-
quence with limit L if, for any € > 0, the property P. ;, holds for (a,) as n - .

Equivalently, (a,) is a convergent sequence with limit L if, for any € > 0, there
is some natural number N such that

n>N = |a,-L|<e.



