
Calculus II: Spring 2018
Contact: gmelvin@middlebury.edu

February 15 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences: an introduction

1 The phrase ‘as n goes to infinity’

Definition 1.1. Let f(n) be a real-valued function, where n is a variable assigned
natural numbers only. Let P be a property. We say that property P holds for
f(n) as n goes to infinity if f(n) satisfies Condition (I) for property P . We will
often write property P holds for f(n) as n→∞.

As a rigorous mathematical statement we have the following:

property P holds for f(n) as n→∞ if there exists a natural
number N such that, for every n ≥ N , property P holds for f(n).

This means that when we form the table

n 1 2 3 4 5 6 ⋯ N N + 1 ⋯

f(n) f(1) f(2) f(3) f(4) f(5) f(6) ⋯ f(N) f(N + 1) ⋯

T/F ∗ ∗ ∗ ∗ ∗ ∗ ⋯ T T →

we can go far enough out to the right (i.e. there exists a natural number N) and find
a place where there are only Ts in front of us (for every n ≥ N , property P holds for
f(n)).

2 Sequences The visual representation we have seen for real-valued functions f(n)
leads us to the following Definition.

Definition 2.1. Let f(n) be a real-valued function, where n is a variable assigned
natural numbers only. The (ordered) collection of all outputs of the function f(n) is
called a sequence.

A sequence should be considered as an infinitely long list:

1 2 3 4 ⋯ n ⋯

f(1) f(2) f(3) f(4) ⋯ f(n) ⋯

We will frequently denote a sequence

(an)n≥1 = (a1, a2, a3, a4, . . . , an, . . .)

where an = f(n). In particular, we care about how we order the outputs of f(n).
We will call an the nth term of the sequence.
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Example 2.2. 1. Let f(n) = n2
− 1. Then, the corresponding sequence is

(0,3,8,15,24,35, . . .)

2. Let f(n) = cos(n). Then, the corresponding sequence is

(cos(1), cos(2), cos(3), cos(4), . . .)

Remark 2.3. (a) Sequences will be denoted (an)n≥1, or simply (an), where
we assume implicitly that an = f(n) for some real-valued function f whose
domain is N.

(b) Given a sequence (an) such that an = f(n), it is often useful to visualise
the graph of f(n) (in a similar manner as the above exercise). We will
also call the graph of f(n) the graph of (an).

(c) Identifying a sequence (an) with a real-valued function f(n) allows us
to make sense of the following statement, where P is a property of real
numbers:

property P holds for (an) as n→∞.

3. Sequences can be defined recursively - this means the nth term is defined
as a function of previous terms. For example, the Fibonacci sequence (fn) is
defined as follows:

f1 = f2 = 1, fn = fn−1 + fn−2, n ≥ 3

The first few terms of (fn) are

1,1,2,3, , , , , . . .

4. Sequences can be defined without nice formulas: for example, an = pn = nth

prime number1. The sequence is

(2,3,5,7,11,13,17,19,23,29,31, . . .)

Recently (January 2018), the largest prime number was discovered: it has
23,249,425 digits and is the natural number

467333 . . . – 23,249,413 digits missing – . . .179071

Despite knowing that this number is prime, we do not (yet) know where it
would appear in the above sequence.

5. Sequences can be defined using (seemingly) ugly formulas: for example,
an = area of K(n), the nth Koch snowflake.

1Note: there is no known formula for prime numbers. If you can find one, and prove it is
correct, then I will give you an A (and you will also be granted a PhD, and a Professorship at
Harvard/Princeton/MIT).
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Check your understanding
Consider the following real-valued functions

g(n) = 2n + (−1)n, h(n) = 1 −
1

n2
, k(n) = 2(

1 + (−1)n

n
) .

1. Write down the first five terms of the corresponding sequence.

2. Plot the graph of the functions above.

3. What general features do the graphs exhibit? Describe as many as you can.

4. For each function above, give a property P of real numbers so that P holds for
that function as n→∞.

We now introduce some terminology for sequences.

Definition 2.4. Let (an) be a sequence.

1. The sequence (an) is increasing if a1 ≤ a2 ≤ a3 ≤ ⋯ ≤ an ≤ ⋯. The sequence
(an) is strictly increasing if a1 < a2 < a3 < ⋯ < an < ⋯
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2. The sequence (an) is decreasing if a1 ≥ a2 ≥ a3 ≥ ⋯ ≥ an ≥ ⋯. The sequence
(an) is strictly decreasing if a1 > a2 > a3⋯ > an > ⋯.

3. The sequence (an) is bounded below if there exists a real number m such
that m ≤ an, for every n. The sequence (an) is bounded above if there exists
a real number M such that an ≤M , for every n. A sequence (an) is bounded
if it is bounded above and below. A sequence (an) is unbounded if it is not
bounded.

Example 2.5. The sequence (an), where an =
1
n is strictly decreasing. This can be

shown as follows: we must show that an > an+1, for every n = 1,2,3, . . . (i.e. a1 > a2,
a2 > a3,. . . etc.). Indeed,

an − an+1 =
1

n
−

1

n + 1
=

1

n(n + 1)
> 0, for n ≥ 1.

Hence, an > an+1, whenever n ≥ 1.

This sequence is bounded below by and bounded above by . Hence, the
sequence is .

Check your understanding

1. For the functions g(n), k(n) given above, state (no need to prove) which of
the above attributes - (strictly) increasing/decreasing, (un)bounded - the cor-
responding sequences possess.

2. Let (an) be an increasing/decreasing sequence. Draw two different possible
shapes of the graph of (an).

3. Let (an) be a bounded sequence. Draw two different possible shapes of the
graph of (an).
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3 Limits We introduce the fundamental notion of a limit of a sequence. This will
build upon our discussion of the phrase ’as n→∞’.

Consider the increasing and bounded sequence (an), where an = 10 − 10
n . Draw the

graph of this sequence below and draw the horizontal line y = 10.

n

y

True/False

1. If P is the property P ∶ 9 < y < 11 then P holds for (an) as n→∞.

2. If P is the property P ∶ ‘the distance from y to 10 is less than 0.01’ then P
holds for (an) as n→∞.

3. If P is the property P ∶ 9.9999 < y < 10.0001 then P holds for (an) as n→∞.

4. If P is the property P ∶ 10− 1
2100 < y < 10+ 1

2100 then P holds for (an) as n→∞.

5. Let ε > 0 be any positive real number. If P is the property

P ∶ ‘the distance from y to 10 is less than ε’

then P holds for (an) as n→∞.

We will now formalise the situation observed above.

Let ε > 0 be a positive real number and let L be an arbitrary real number. We define
Dε,L (note that this property depends upon both ε and L) to be the property of real
numbers y,

Dε,L ∶ ‘the distance from y to L is less than ε’

Definition 3.1. Let (an) be a sequence. We say that (an) is a convergent se-
quence with limit L if, for any ε > 0, the property Pε,L holds for (an) as n→∞.

Equivalently, (an) is a convergent sequence with limit L if, for any ε > 0, there
is some natural number N such that

n ≥ N Ô⇒ ∣an −L∣ < ε.
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