

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

February 14 Lecture

The phrase 'as n tends to infinity'

1 The Natural Numbers. Define the NATURAL NUMBERS to be the collection of all positive integers

Denote by $\mathbb N$ the collection of natural numbers. The variable n will be used to denote an arbitrary natural number.

2 Functions Recall that, if A and B are sets and $f: A \to B$ is a rule, then we say that f is a function with domain A and codomain B if f assigns each element in A to exactly one element in B (i.e. every input has a unique output).

CHECK YOUR UNDERSTANDING

Determine which of the following are functions:

1. A = set of all human mothers in the world, B = set of all humans, f assigns to a mother, a, their children.

function

not a function

2. $A = \mathbb{N}$, B = set of real numbers, $f(n) = n^{th}$ decimal digit of π .

function

not a function

3. $A = \mathbb{N}$, $B = \{1, -1\}$ the set containing 1 and -1 only, and f(n) = 1, if n is even, and f(n) = -1 if n is odd.

not a function

Functions should be familiar objects to you. In this lecture we will begin an investigation in to the behaviour of real-valued functions f(n), having domain N: this means that, to every natural number n we are associating exactly one real number f(n).

3 The phrase "n tends to ∞ ". Let f(n) be some real-valued function, where n is a natural number. Here are some examples:

Example 3.1.,

- 1. $f(n) = p_n$, where p_n is the n^{th} prime number; f(1) = 2, f(2) = 3, f(3) = 5, etc.
- 2. $f(n) = n^2 + 2$.
- 3. $f(n) = (-1)^n$; f(1) = -1, f(2) = 1, f(3) = -1, etc.

4.
$$f(n) = 1 - \frac{1}{n}$$
; $f(1) = 0$, $f(2) = \frac{1}{2}$, $f(3) = \frac{2}{3}$, $f(4) = \frac{3}{4}$, etc.

5.
$$f(n) = n^{th}$$
 decimal digit of π ; $f(1) = 1$, $f(2) = 4$, $f(3) = 1$, $f(4) = 5$, etc.

6.
$$f(n)$$
 = area of $K(n)$, where $K(n)$ is the n^{th} Koch snowflake (see February 12 Lecture).

Suppose that P is some given property that we wish to check of a real number y: for example, P could be the property

$$y > 1$$
,

or the property

'the difference between y^2 and $-\frac{1}{2}$ is less than 0.001'.

We will only consider those properties P that are well-defined properties: for a given real number y, either P is true (for y) or P is false (for y).

Aim: given a real-valued function f(n) and a property P, determine those n for which property P is true for f(n).

We could record our results using a table:

For example, let $f(n) = \frac{1}{n}$, P is the property 'y < 0.2'.

For any real-valued function f(n) and any property P, exactly one of the following three Conditions must hold:

(I) property
$$P$$
 is true for $y = f(n)$, for all but finitely many n .

(II) property P is false for $y = f(n)$, except for finitely many n .

(III) neither (I) nor (II).

INFINITE TS, FINITE T

We will say that f(n) satisfies Condition (I), (II) or (III) for property P. For example, if $f(n) = \frac{1}{n}$ and P : 'y < 0.2' then f(n) satisfies Condition (I) for property P: property P is true for y = f(n), except when n = 1, 2, 3, 4, 5.

CHECK YOUR UNDERSTANDING

Let P be the property 'y is not an integer'. Determine the Condition ((I), (II) or (III)) that the following functions satisfy for property P:

- 1. $f(n) = \frac{p_n}{5}$, where p_n is the n^{th} prime number. Recall that the prime numbers are $2, 3, 5, 7, 11, 13, \ldots$
- 2. $f(n) = \cos(n\pi)$.
- 3. $f(n) = 6\left(\frac{1+(-1)^n}{n}\right)$

Hint: it will be useful to write down f(n) for some values of n; try to spot patterns!

		• • • • • • • • • • • • • • • • • • •												
Solution: \wedge		ı	2	3	4	5	6	7	8	9	10	<i>j</i> 1	12	13
(I)	Pn/5	2/5	3/5											
	-1-	١		F	7	T	T	<u> </u>	T	T	T	<u> </u>	T	
(<u>I</u> T)	CISLATI	-1	}	-1	1	-1)	-1	1	- i)	-1	1	-1
	T/F	F	F	F	F	F	F	F	F	F	-	1	F	F
	(1+(-1)M)	0	6	0	3	0	2	0	3/2	0	6/5	0	i	09
	T/F	F	F	F	F	F	F	F	T	F	T	F	F	F 7
		1												į

We will now consider Condition (I) in more detail. Let P be a property and f(n)a function satisfying Condition (I) for property P. Then, there can exist at most finitely many (possibly zero!) inputs n_1,\ldots,n_k such that property P does not hold for $f(n_1), \ldots, f(n_k)$. Note: the inputs n_1, \ldots, n_k are not necessarily the first knatural numbers.

Therefore, if we let N be a natural number that is larger than each of n_1, \ldots, n_k , then, for every $n \ge N$, property P holds for f(n).

Example 3.2. Let P be the property 'y > 2', and let $f(n) = \frac{p_n^2}{49}$, where p_n is the n^{th} prime number. Then, we have

We record our observation below.

To say that a function f(n) satisfies Condition (I) for property P is precisely the same as saying that there exists some large natural number N so that, for every $n \ge N$, property P holds for f(n).

Definition 3.3. Let f(n) be a real-valued function, where n is a variable assigned natural numbers only. Let P be a property. We say that property P holds for f(n) as n goes to infinity if f(n) satisfies Condition (I) for property P. We will often write property P holds for f(n) as $n \to \infty$.

As a rigorous mathematical statement we have the following:

property P holds for f(n) as $n \to \infty$ if there exists a natural number N such that, for every $n \ge N$, property P holds for f(n).