February 14 Lecture

The Phrase 'as n TEnds to infinity'

1 The Natural Numbers. Define the natural numbers to be the collection of all positive integers

$$
1, \quad 2, \quad 3, \quad 4, \quad 5, \quad \ldots
$$

Denote by \mathbb{N} the collection of natural numbers. The variable n will be used to denote an arbitrary natural number.

2 Functions Recall that, if A and B are sets and $f: A \rightarrow B$ is a rule, then we say that f is a function with domain A and codomain B if f assigns each element in A to exactly one element in B (i.e. every input has a unique output).

Check your understanding

Determine which of the following are functions:

1. $A=$ set of all human mothers in the world, $B=$ set of all humans, f assigns to a mother, a, their children.

function not a function

2. $A=\mathbb{N}, B=$ set of real numbers, $f(n)=n^{\text {th }}$ decimal digit of π.

function not a function

3. $A=\mathbb{N}, B=\{1,-1\}$ the set containing 1 and -1 only, and $f(n)=1$, if n is even, and $f(n)=-1$ if n is odd.

function not a function

Functions should be familiar objects to you. In this lecture we will begin an investigation in to the behaviour of real-valued functions $f(n)$, having domain \mathbb{N} : this means that, to every natural number n we are associating exactly one real number $f(n)$.

3 The phrase " n tends to ∞ ". Let $f(n)$ be some real-valued function, where n is a natural number. Here are some examples:

Example 3.1. ,

1. $f(n)=p_{n}$, where p_{n} is the $n^{\text {th }}$ prime number; $f(1)=2, f(2)=3, f(3)=5$, etc.
2. $f(n)=n^{2}+2$.
3. $f(n)=(-1)^{n} ; f(1)=-1, f(2)=1, f(3)=-1$, etc.
4. $f(n)=1-\frac{1}{n} ; f(1)=0, f(2)=\frac{1}{2}, f(3)=\frac{2}{3}, f(4)=\frac{3}{4}$, etc.
5. $f(n)=n^{\text {th }}$ decimal digit of $\pi ; f(1)=1, f(2)=4, f(3)=1, f(4)=5$, etc.
6. $f(n)=$ area of $K(n)$, where $K(n)$ is the $n^{\text {th }}$ Koch snowflake (see February 12 Lecture).

Suppose that P is some given property that we wish to check of a real number y : for example, P could be the property

$$
\text { ' } y>1 \text { ', }
$$

or the property
'the difference between y^{2} and $-\frac{1}{2}$ is less than 0.001'.
We will only consider those properties P that are well-defined properties: for a given real number y, either P is true (for y) or P is false (for y).

Aim: given a real-valued function $f(n)$ and a property P, determine those n for which property P is true for $f(n)$.

We could record our results using a table:

$$
\begin{array}{c|ccccc}
n & 1 & 2 & 3 & 4 & \cdots \\
f(n) & f(1) & f(2) & f(3) & f(4) & \cdots \\
\mathrm{T} / \mathrm{F} & & & & &
\end{array}
$$

For example, let $f(n)=\frac{1}{n}, P$ is the property ' $y<0.2$ '.

$$
\begin{array}{c|cccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \ldots \\
f(n) & 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \cdots \\
\mathrm{~T} / \mathrm{F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \cdots
\end{array}
$$

For any real-valued function $f(n)$ and any property P, exactly one of the following three Conditions must hold:
(I) property P is true for $y=f(n)$, for all but finitely many n.
(II) property P is false for $y=f(n)$, except for finitely many n.
(III) neither (I) nor (II).

We will say that $f(n)$ satisfies Condition (I), (II) or (III) for property P.

Check your understanding

Let P be the property ' y is not an integer'. Determine the Condition ((I), (II) or (III)) that the following functions satisfy for property P :

1. $f(n)=\frac{p_{n}}{5}$, where p_{n} is the $n^{\text {th }}$ prime number. Recall that the prime numbers are $2,3,5,7,11,13, \ldots$
2. $f(n)=\cos (n \pi)$.
3. $f(n)=6\left(\frac{1+(-1)^{n}}{n}\right)$

Hint: it will be useful to write down $f(n)$ for some values of n; try to spot patterns!

Solution:

We will now consider Condition (I) in more detail. Let P be a property and $f(n)$ a function satisfying Condition (I) for property P. Then, there can exist at most finitely many (possibly zero!) inputs n_{1}, \ldots, n_{k} such that property P does not hold for $f\left(n_{1}\right), \ldots, f\left(n_{k}\right)$. Note: the inputs n_{1}, \ldots, n_{k} are not necessarily the first k natural numbers.

Therefore, if we let N be a natural number that is larger than each of n_{1}, \ldots, n_{k}, then, for every $n \geq N$, property P holds for $f(n)$.

Example 3.2. Let P be the property ' $y>2$ ', and let $f(n)=\frac{p_{n}^{2}}{49}$, where p_{n} is the $n^{\text {th }}$ prime number. Then, we have

n	1	2	3	4	5	6	7	\ldots	
$f(n)$									
T / F									

We see that property P holds for property P only if $n=$ \qquad . Hence, if we take $N=$ \qquad then, for every $n \geq N$, property P holds for $f(n)$. In words, whenever n is greater than or equal to \qquad , the value $f(n)=\frac{p_{n}^{2}}{49}>2$.

We record our observation below.

To say that a function $f(n)$ satisfies Condition (I) for property P is precisely the same as saying that there exists some large natural number N so that, for every $n \geq N$, property P holds for $f(n)$.

Definition 3.3. Let $f(n)$ be a real-valued function, where n is a variable assigned natural numbers only. Let P be a property. We say that property P holds for $f(n)$ as n goes to infinity if $f(n)$ satisfies Condition (I) for property P. We will often write property P holds for $f(n)$ as $n \rightarrow \infty$.

As a rigorous mathematical statement we have the following:
property P holds for $f(n)$ as $n \rightarrow \infty$ if there exists a natural number N such that, for every $n \geq N$, property P holds for $f(n)$.

