Practice Examination III

You may use the following identities and formulae without proof.
a.

$$
\begin{aligned}
& \cos ^{2}(x)+\sin ^{2}(x)=1 \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

c.

$$
\begin{gathered}
\int \sec (x) d x=\ln (\sec (x)+\tan (x))+C \\
\int \tan (x) d x=\ln |\sec (x)|+C
\end{gathered}
$$

e.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C
\end{aligned}
$$

g.

$$
\begin{aligned}
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

d.

$$
\begin{gathered}
\frac{d}{d x}(\tan (x))=\sec ^{2}(x) \\
\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)
\end{gathered}
$$

b.

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
& =1-2 \sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1
\end{aligned}
$$

f.

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

h.

$$
\begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k} x^{k}
\end{aligned}
$$

Instructions:

- You must attempt Problem 1.
- Please attempt at least five of Problems 2, 3, 4, 5, 6, 7, 8 .
- If you attempt all eight problems then your final score will be the sum of your score for Problem 1 and the scores for the five remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a) The function $f(x)=2-4 x-x^{2},-1 \leq x \leq 1$ is one-to-one.
(b) Let $e=\exp (1)$ be Euler's number. Then,

$$
\int_{1}^{\exp (5)} \frac{1}{t} d t=e^{5}
$$

(c) The partial fraction decomposition of $\frac{2 x+3}{x^{2}(x+1)}$ is

$$
\frac{2}{x}-\frac{3}{x^{2}}+\frac{1}{2(x+1)}
$$

(d) The series $\sum_{n=1}^{\infty} \frac{\cos (n)+1}{n^{2}+1}$ is convergent.
(e) The function $y=\frac{1}{1+x}$ is a solution to the differential equation $y^{\prime}-y=x y$.
(f) Let $f(x)$ be a solution to the differential equation $f^{\prime}(x)=3 x / f(x)$. Then, the set of points $(x, f(x))$ describes part of an ellipse.
(g)

$$
\int_{0}^{2} \frac{1}{(1-x)^{2}} d x=-2
$$

(h) The series $\sum_{n=3}^{\infty} \frac{4^{n+1}}{7^{n-1}}$ is divergent.
(i) Let $\left(a_{n}\right)$ be a convergent sequence with limit L. Then, for every $n,\left|a_{n}-L\right|<10^{-n}$.

$$
\begin{equation*}
\int e^{-x^{2}} d x=x e^{-x^{2}}+\int 2 x^{2} e^{-x^{2}} d x \tag{j}
\end{equation*}
$$

2. Determine the following antiderivative problems.
(a)

$$
\int \arcsin (x) d x
$$

(b)

$$
\int \sqrt{x^{2}+4 x+5} d x
$$

3. (a) Using the method of partial fractions, determine the antiderivative problem

$$
\int \frac{x+2}{25 x^{2}-x^{4}} d x
$$

(b) Determine whether the following improper integral is convergent or divergent

$$
\int_{1}^{5} \frac{x+2}{25 x^{2}-x^{4}} d x
$$

4. (a) Find the general solution to the differential equation.

$$
x y^{\prime}-y-\frac{x^{2}}{\sqrt{x^{2}+1}}=0
$$

(b) Determine the unique solution to the following differential equation satisfying $y(0)=1$

$$
\cos (x) y^{\prime}=y^{2} \sin (x)
$$

5. (a) Determine the domain of the function $f(x)$ given by the power series

$$
f(x)=\sum_{n=1}^{\infty} \frac{2^{n}(x+1)^{n}}{n^{1 / 3}}
$$

What is $f^{(7)}(-1)$?
(b) Determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{n}
$$

6. (a) Using induction show that $n^{2}-3 n+4$ is even, for every natural number n. Recall that an integer r is even if $r=2 s$, for some integer s.
(b) Using induction show that

$$
\sum_{j=1}^{n+1} j 2^{j}=n 2^{n+2}+2, \quad n \geq 1
$$

7. (a) Determine whether the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{(n!)^{2}}
$$

(b) Let $\left(a_{n}\right)$ be the sequence defined recursively by the relation

$$
a_{n}=\frac{a_{n-1}+1}{4}, \quad a_{1}=1
$$

i. Using induction show that $a_{n}>\frac{1}{3}$, for all $n \geq 1$.
ii. Using induction show that $a_{n+1}-a_{n}<0$, for all $n \geq 1$.
iii. Show that $\left(a_{n}\right)$ is convergent and determine $L=\lim _{n \rightarrow \infty} a_{n}$.
8. (a) (10 points) Determine the Taylor series of $f(x)=2 \sin (x+1)$ centred at $c=-1$.
(b) (10 points) Determine those x for which the Taylor series you obtained in part (a) equals $f(x)$.

