Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

Practice Examination II Solution

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a) $\int_{1}^{\exp (2 x)} \frac{1}{t} d t=2 \int_{1}^{x} \frac{1}{t} d t$
(b) The function $f(x)=3-\sin (x+1),-1 \leq x \leq 2$, has an inverse function.
(c) There exists a power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ that converges at $x=-4$ and diverges at $x=5$.
(d) Let $f(x)$ be an infinitely differentiable function with associated Tayloer series (centred at $c=2$)

$$
\sum_{n=0}^{\infty} \frac{5^{n}}{n}(x-2)^{n}
$$

Then, $f^{(10)}(2)=\frac{5^{10}}{9!}$.
(e) Let $\sum_{n=0}^{\infty} c_{n} x^{n}$ be a power series with interval of convergence $[-2,2)$. Then, the radius of convergence of $\sum_{n=0}^{\infty} c_{n}(x-1)^{n}$ is $R=1$.

Solution:

(a) F
(b) T
(c) F
(d) F
(e) F
2. Determine the interval of convergence of the following power series.
(a)

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{2 n+1}(x-3)^{n}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}(x+1)^{n}
$$

Solution:

(a) Let $a_{n}=\frac{2^{n}}{2 n+1}(x-3)^{n}$. Then,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=2|x-3| \frac{2 n+1}{2 n+3} \rightarrow 2|x-3|
$$

Hence, converges when $|x-3|<\frac{1}{2}$ i.e. $\frac{5}{2}<x<\frac{7}{2}$.
Check endpoints:

- $x=\frac{5}{2}: \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ convergent by AST.
- $x=\frac{7}{2}: \sum_{n=0}^{\infty} \frac{1}{2 n+1}$ divergence by Limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.

Interval of convergence is $\frac{5}{2} \leq x<\frac{7}{2}$.
(b) Let $a_{n}=\frac{n!}{(2 n)!}(x+1)^{n}$. Then,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=|x+1| \frac{n+1}{(2 n+1)(2 n+2)} \rightarrow 0
$$

Hence, converges for all x.
3. Consider the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{2^{n}(n+2)}
$$

(a) Determine the domain A of $f(x)$.
(b) What is $f^{\prime \prime}(-2)$?
(c) Give a function $g(x)$ with domain A satisfying $\frac{d}{d x} g(x)=f(x)$.

Solution:

(a) Determine interval of convergence: let $a_{n}=\frac{(x+2)^{n}}{2^{n}(n+2)}$. Then,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=|x+2| \frac{n+2}{2(n+3)} \rightarrow \frac{|x+2|}{2}
$$

Hence, converges when $|x+2|<2$ i.e. $-4<x<0$, and diverges when $x>0$ or $x<-4$. Check endpoints:

- $x=-4: \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+2}$ is convergent by AST.
- $x=0: \sum_{n=0}^{\infty} \frac{1}{n+2}$ diverges by LCT with $\sum \frac{1}{n}$.

Hence, domain is $A:-4 \leq x<2$.
(b) $f(x)$ is function defined by power series so we can differentiate term-by-term: we have

$$
\begin{gathered}
f(x)=\frac{1}{2}+\frac{1}{2 \times 3}(x+2)+\frac{1}{4 \times 4}(x+2)^{2}+\frac{1}{8 \times 5}(x+2)^{3}+\ldots \\
\Longrightarrow f^{\prime \prime}(x)=\frac{2}{4 \times 4}+\frac{3 \times 2}{8 \times 5}(x+2)+\ldots
\end{gathered}
$$

All higher order terms will vanish when $x=-2$. Hence, $f^{\prime \prime}(-2)=\frac{2}{4^{2}}=\frac{1}{8}$.
(c) We integrate $f(x)$ term-by-term:

$$
\int f(x) d x=C+\frac{1}{2}(x+2)+\frac{1}{2 \times 3} \frac{(x+2)^{2}}{2}+\frac{1}{4 \times 4} \frac{(x+2)^{3}}{3}+\ldots
$$

Choose $C=0$, for example. Let

$$
g(x)=\frac{1}{2}(x+2)+\frac{1}{2 \times 3} \frac{(x+2)^{2}}{2}+\frac{1}{4 \times 4} \frac{(x+2)^{3}}{3}+\ldots
$$

then

$$
\frac{d}{d x}(g(x))=f(x)
$$

4. Using induction show that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{2 n+1}
$$

for any natural number n.
Solution: Let

$$
P(n): \quad \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{2 n+1}
$$

Base Case: $n=1$

$$
\frac{1}{1 \times 3}=\frac{1}{3}=\frac{1}{2+1}
$$

Hence, $P(1)$ is true.
Inductive Step: Assume $P(k)$, for some k,

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k-1) \times(2 k+1)}=\frac{k}{2 k+1}
$$

Then,

$$
\begin{aligned}
& \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 k-1) \times(2 k+1)}+\frac{1}{(2(k+1)-1) \times(2(k+1)+1)} \\
= & \frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}, \quad \text { by inductive hyp. } \\
= & \frac{1}{(2 k+1)(2 k+3)}(k(2 k+3)+1) \\
= & \frac{1}{(2 k+1)(2 k+3)}\left(2 k^{2}+3 k+1\right) \\
= & \frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}=\frac{k+1}{2(k+1)+1}
\end{aligned}
$$

Hence, $P(k+1)$. By mathemtical induction, $P(n)$, for every $n \geq 1$.
5. (a) Determine the associated Taylor series (centred at $c=5$) of $f(x)=\frac{1}{x}$.
(b) Suppose $f(x)$ is a function with associated Taylor series (centred at $c=0$)

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n(2 n+1)}
$$

Determine the associated Taylor series (centred at $c=0$) of $f^{\prime}(x)$.

Solution:

(a) We compute

$$
f^{\prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad f^{\prime \prime \prime}(x)=-\frac{3.2}{x^{4}}, \quad f^{\prime \prime \prime \prime}(x)=\frac{4.3 .2}{x^{5}}
$$

Then, $f^{(n)}(x)=(-1)^{n} \frac{n!}{x^{n+1}}$. Hence,

$$
f^{(n)}(5)=(-1)^{n} \frac{n!}{5^{n+1}} \quad \Longrightarrow \quad \frac{f^{(n)}(5)}{n!}=\frac{(-1)^{n}}{5^{n+1}}
$$

Thus, the Taylor series associated to $f(x)=\frac{1}{x}$ centred at $c=5$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(5)}{n!}(x-5)^{n}=\frac{1}{5}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5^{n+1}}(x-5)^{n}
$$

(b) Let $g(x)=f^{\prime}(x)$. Then, $g^{(n)}(x)=f^{(n+1)}(x)$. Hence,

$$
\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{f^{(n+1)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{2 n+3}
$$

since

$$
\frac{f^{(n+1)}(0)}{(n+1)!}=\frac{1}{(n+1)(2(n+1)+1)}=\frac{1}{(n+1)(2 n+3)}
$$

