Calculus II: Spring 2018

Practice Examination II

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a) $\int_{1}^{\exp (2 x)} \frac{1}{t} d t=2 \int_{1}^{x} \frac{1}{t} d t$
(b) The function $f(x)=3-\sin (x+1),-1 \leq x \leq 2$, has an inverse function.
(c) There exists a power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ that converges at $x=-4$ and diverges at $x=5$.
(d) Let $f(x)$ be an infinitely differentiable function with associated Tayloer series (centred at $c=2$)

$$
\sum_{n=0}^{\infty} \frac{5^{n}}{n}(x-2)^{n}
$$

Then, $f^{(10)}(2)=\frac{5^{10}}{9!}$.
(e) Let $\sum_{n=0}^{\infty} c_{n} x^{n}$ be a power series with interval of convergence $[-2,2)$. Then, the radius of convergence of $\sum_{n=0}^{\infty} c_{n}(x-1)^{n}$ is $R=1$.
2. Determine the interval of convergence of the following power series.
(a)

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{2 n+1}(x-3)^{n}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}(x+1)^{n}
$$

3. Consider the function

$$
f(x)=\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{2^{n}(n+2)}
$$

(a) Determine the domain A of $f(x)$.
(b) What is $f^{\prime \prime}(-2)$?
(c) Give a function $g(x)$ with domain A satisfying $\frac{d}{d x} g(x)=f(x)$.
4. Using induction show that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 n-1) \times(2 n+1)}=\frac{n}{2 n+1}
$$

for any natural number n.
5. (a) Determine the associated Taylor series (centred at $c=5$) of $f(x)=\frac{1}{x}$.
(b) Suppose $f(x)$ is a function with associated Taylor series (centred at $c=0$)

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n(2 n+1)}
$$

Determine the associated Taylor series (centred at $c=0$) of $f^{\prime}(x)$.

