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TAYLOR’S THEOREM

Let f(z) be an infinitely differentiable function (ie. f™(z), the n™* derivative of f(z) exists, for
all n). The Taylor series associated to f(z) (centred at ) is the series
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The n**-degree Taylor polynomial of f centred at ¢ is
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Tn(z) is a partial sum of T,(z)
= im0 T3(z) = To(z)

Define
Bn(2) = f(z) ~ Tu(x),
the n** remainder of the Taylor series.

We are interested in understanding when f(z) = To(z). We see that:
fx)=T(z) <= ,}E’f}o R, (z) = O

- - Taylor’s Theorem provides us with a tool to understand how large the remainder R, (z) can be:

Taylor’s Theorem/ Inequality

If | fm+D)(z)] < M for l:v —¢ < d'then
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Let’s see how to use Taylor’s Theorem in practice.

Example: Let f(z) = sin(z). We showed that the associated Taylor series (centred at ¢ = 0) is
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Since any derivative of f(z) is either equal to iéin(x) or +'¢3s(z), we have
|F™) ()] SL@ f,?)/; any n=0,1,2,3,..., and any z.
Take, for example, d = 10 (this is an arbitrary choice). Then, for any n, we have
[ (@) <1 whenever |z §>10. .

- Hence, Taylor’s Inequality implies that
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forjz]<_ | O and any n.

|Rn(z)] <

This means that
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Reminder: For any real number ¢, lim,,q, 2—’: = (.

Hence, by the SQ(— WY Theorem, we conclude that lim,,_,q, R.(z) = O , whenever
lz|<__[O
Hence, by Taylor’s Theorem, for any z in the interval _— JOS K €19 Lo o0
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Since our choice d = 10 was arbitrary, we have the following power series representation of sin(z),
valid for all z (recall that the angle 2 must be measured in radians:
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In your Homework you will show that
z2 gt il (—1)kg2k
cos(:t:)=1—E+E—a+...=;—————(2k)! for any z.




Obtaining a power series representation for f(z) allows us to approximate the value of f(z). For

example, using the 7* degree Taylor polynomial T7(z) of sin(z) (centred at ¢ = 0), we compute
1 1 1

This gives the value of sin(1) correct to four decimal places.

CHECK YOUR UNDERSTANDING
1. Use the Taylor Series for cos(z) given above to show that the series
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is convergent and determine its limit. (You could show this series is convergent using a
- (tricky) Alternating Series Test argument but this does not give the limit of the series)
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2. Let a, = nsin(1/n). Using the Taylor series for sin(z), show that

lima, =1
n—roo .

(You may have seen how to compute this limit in a previous calculus course using I’Hopital’s

Rule)
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Bye bye sequences & series
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