Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 9 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Taylor Series, Integral Calculus, Khan Academy

Keywords: Taylor series, Taylor polynomials, Taylor's theorem

Taylor's Theorem

Let $f(x)$ be an infinitely differentiable function (i.e. $f^{(n)}(x)$, the $n^{\text {th }}$ derivative of $f(x)$ exists, for all n). The Taylor series associated to $f(x)$ (centred at c) is the series

$$
\mathcal{T}_{c}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots
$$

The $n^{t h}$-degree Taylor polynomial of f centred at c is

$$
T_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}=\sum_{j=0}^{n} \frac{f^{(j)}(c)}{j!}(x-c)^{j}
$$

$$
\begin{gathered}
T_{n}(x) \text { is a partial sum of } \mathcal{T}_{c}(x) \\
\Longrightarrow \quad \lim _{n \rightarrow \infty} T_{n}(x)=\mathcal{T}_{c}(x)
\end{gathered}
$$

Define

$$
R_{n}(x)=f(x)-T_{n}(x),
$$

the $n^{t h}$ remainder of the Taylor series.
We are interested in understanding when $f(x)=\mathcal{T}_{c}(x)$. We see that:

$$
f(x)=\mathcal{T}_{c}(x) \quad \Longleftrightarrow \quad \lim _{n \rightarrow \infty} R_{n}(x)=
$$

\qquad
Taylor's Theorem provides us with a tool to understand how large the remainder $R_{n}(x)$ can be:

Taylor's Theorem/Inequality

If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-c| \leq d$ then

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-c|^{n+1} \leq \frac{M d^{n+1}}{(n+1)!} \quad \text { for }|x-c| \leq d
$$

Let's see how to use Taylor's Theorem in practice.
Example: Let $f(x)=\sin (x)$. We showed that the associated Taylor series (centred at $c=0)$ is

$$
\mathcal{T}_{0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

Since any derivative of $f(x)$ is either equal to $\pm \sin (x)$ or $\pm \cos (x)$, we have

$$
\left|f^{(n)}(x)\right| \leq 1, \quad \text { for any } n=0,1,2,3, \ldots, \text { and any } x
$$

Take, for example, $d=10$ (this is an arbitrary choice). Then, for any n, we have

$$
\left|f^{(n+1)}(x)\right| \leq 1 \quad \text { whenever }|x| \leq 10
$$

Hence, Taylor's Inequality implies that

$$
\left|R_{n}(x)\right| \leq \ldots \quad \text { for }|x| \leq \ldots \quad \text { and any } n
$$

This means that

$$
\ldots \quad \text { for }|x| \leq 10
$$

Reminder: For any real number $c, \lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$.
Hence, by the \qquad Theorem, we conclude that $\lim _{n \rightarrow \infty} R_{n}(x)=$ \qquad , whenever $|x| \leq$ \qquad .
Hence, by Taylor's Theorem, for any x in the interval \qquad we have

$$
\sin (x)=
$$

\qquad

Since our choice $d=10$ was arbitrary, we have the following power series representation of $\sin (x)$, valid for all x (recall that the angle x must be measured in radians:

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}
$$

In your Homework you will show that

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \quad \text { for any } x
$$

Obtaining a power series representation for $f(x)$ allows us to approximate the value of $f(x)$. For example, using the $7^{\text {th }}$ degree Taylor polynomial $T_{7}(x)$ of $\sin (x)$ (centred at $c=0$), we compute

$$
T_{7}(1)=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}=0.841468 \ldots
$$

This gives the value of $\sin (1)$ correct to four decimal places.

Check your understanding

1. Use the Taylor Series for $\cos (x)$ given above to show that the series

$$
1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+\ldots
$$

is convergent and determine its limit. (You could show this series is convergent using a (tricky) Alternating Series Test argument but this does not give the limit of the series)
2. Let $a_{n}=n \sin (1 / n)$. Using the Taylor series for $\sin (x)$, show that

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

(You may have seen how to compute this limit in a previous calculus course using l'Hopital's Rule)

Bye bye sequences \& series

