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THE CENTRE & COEFFICIENTS; TAYLOR SERIES

- In this lecture we will investigate the role of the centre of a power series. Then, we will begin
an investigation into the conditions that a function f (z) must satisfy in order for it to possess a
power series representation (centred at c): this will lead us to the Taylor series of f(z)..
The centre
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In particular; we've determine a power-series represention of f(z) = T—l—-a; centred at ¢ = ~1:
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Question:
How do we interpret this power series expansion of f (z) = '1%.73 centred at ¢ ="—17
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Consider the graph of f(z) = {1-:
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Observation:
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CHECK YOUR UNDERSTANDING

1. Based on the above observation, what do you expect to tbe the interval of convergence for

a power series representation of f(z) = 1= centred at ¢ = —57?
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2. Verify your guess by writing down the first four nonzero terms of the power series representa-

tion 377 ca(z+5)" for f(z) = {1 centred at ¢ = ~5. Hint: perform a similar computation
as above.
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Taylor Series
We are interested in the following problem.

Problem: Let f(z) be a given function.

1. Does f(z) admit a power series representation? If so, how do we
determine it?

2. For which z is the Dower series representation valid?

Definition: Let f(z) be an infinitely differentiable function. The Taylor series associated to
f(z) centred at c is the series E
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When ¢ = 0 the Taylor series associated to f (z) is also called the Maclaurin series of f(z)
(after the Scottish mathematician Colin Maclaurin (1698-1746)).

Remark: IMPORTANT!]

At this time, the Taylor series of f(z) centred at ¢ is a series that we are
associating to f(z); we are not saying that the Taylor series is equal to

f(z). We will investigate when the Taylor series equals £(z) in the next
lecture.

Example:

Let f(z) = sin(z). Then, f (z) is-an infinitely differentiable function and we can determine its
associated Taylor series at ¢ = 0 (i.e. the Maclaurin series). We compute )

f0)=_0_
f/(O) =.‘“_

o)=_°

In general
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Hence, the Taylor series associated to f(z) =sin(z) at ¢ =0 is
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The coefficients
Recall that a power series En—o ca(z-— ¢)™ is completely determined by its centre and its coef-

ficients

Question:

Can we détermine the coefficients of the power series representation of f(z) = =

centred at ¢ = —5 without playing the calculus/series game?

Thankfully, yes!

MATHEMATICAL WORKOUT
_ Let f(z) = l—z

1. Using induction show that
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Here f™(z) is the n* derivative of f(z). Hint: f™+(z) = 4 ) (z).
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2. Compute the following quantities:
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3. What is the relationship between the values just computed andthe coefficients ¢y, ¢y, ¢, ¢3

you obtained for the power series representation of f(z) = - ~ at ¢c=—57
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