Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 5 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Taylor Series, Integral Calculus, Khan Academy

Keywords: centre, coefficients, Taylor series

The centre \& coefficients; Taylor series

In this lecture we will investigate the role of the centre of a power series. Then, we will begin an investigation into the conditions that a function $f(x)$ must satisfy in order for it to possess a power series representation (centred at c): this will lead us to the Taylor series of $f(x)$.

The centre

The function $f(x)=\frac{1}{1-x}$ has power series representation

$$
f(x)=1+\sum_{n=1}^{\infty} x^{n}, \quad \text { valid whenever }-1<x<1
$$

Let's do something wacky: we can write

$$
f(x)=\frac{1}{1-x}=\frac{1}{2-(x+1)}=
$$

\qquad
Expanding
\qquad
which is valid whenever
\qquad
In particular, we've determine a power series represention of $f(x)=\frac{1}{1-x}$ centred at $c=-1$:

$$
f(x)=
$$

\qquad
valid whenever \qquad $<x<$ \qquad

Question:

How do we interpret this power series expansion of $f(x)=\frac{1}{1-x}$ centred at $c=-1$?

Consider the graph of $f(x)=\frac{1}{1-x}$:

Observation:

Check your understanding

1. Based on the above observation, what do you expect to the the interval of convergence for a power series representation of $f(x)=\frac{1}{1-x}$ centred at $c=-5$?
2. Verify your guess by writing down the first four nonzero terms of the power series representation $\sum_{n=0}^{\infty} c_{n}(x+5)^{n}$ for $f(x)=\frac{1}{1-x}$ centred at $c=-5$. Hint: perform a similar computation as above.

The coefficients

Recall that a power series $\sum_{n=0}^{\infty} c_{n}(x-c)^{n}$ is completely determined by its centre and its coefficients

Question:

Can we determine the coefficients of the power series representation of $f(x)=\frac{1}{1-x}$ centred at $c=-5$ without playing the calculus/series game?

Thankfully, yes!
Mathematical workout
Let $f(x)=\frac{1}{1-x}$.

1. Using induction show that

$$
f^{(n)}(x)=\frac{n!}{(1-x)^{n+1}}, \quad n=1,2,3, \ldots
$$

Here $f^{(n)}(x)$ is the $n^{t h}$ derivative of $f(x)$. Hint: $f^{(n+1)}(x)=\frac{d}{d x} f^{(n)}(x)$.
Base Case:

Inductive Step:
2. Compute the following quantities:
$f(-5)=$ \qquad , $f^{\prime}(-5)=$ \qquad , $f^{\prime \prime}(-5)=$ \qquad , $f^{\prime \prime \prime}(-5)=$ \qquad
3. What is the relationship between the values just computed andthe coefficients $c_{0}, c_{1}, c_{2}, c_{3}$ you obtained for the power series representation of $f(x)=\frac{1}{1-x}$ at $c=-5$?

Taylor Series

We are interested in the following problem.
Problem: Let $f(x)$ be a given function.

1. Does $f(x)$ admit a power series representation? If so, how do we determine it?
2. For which x is the power series representation valid?

Definition: Let $f(x)$ be an infinitely differentiable function. The Taylor series associated to $f(x)$ centred at c is the series

$$
\sum_{n=0}^{\infty} \longrightarrow(x-c)^{n}=
$$

\qquad
When $c=0$ the Taylor series associated to $f(x)$ is also called the Maclaurin series of $f(x)$ (after the Scottish mathematician Colin Maclaurin (1698-1746)).

Remark: [IMPORTANT!]

At this time, the Taylor series of $f(x)$ centred at c is a series that we are associating to $f(x)$; we are not saying that the Taylor series is equal to $f(x)$. We will investigate when the Taylor series equals $f(x)$ in the next lecture.

Example:

Let $f(x)=\sin (x)$. Then, $f(x)$ is an infinitely differentiable function and we can determine its associated Taylor series at $c=0$ (i.e. the Maclaurin series). We compute

$$
\begin{aligned}
& f(0)= \\
& f^{\prime}(0)= \\
& f^{\prime \prime}(0)=
\end{aligned}
$$

In general

$$
f^{(n)}(0)= \begin{cases}\quad, & \text { if } n \text { even } \\ \quad, & \text { if } n=2 k+1\end{cases}
$$

Hence, the Taylor series associated to $f(x)=\sin (x)$ at $c=0$ is

1. Let

$$
f(x)=\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots
$$

(a) Determine

$$
f(0)=_, \quad f^{\prime}(0)=_, \quad f^{\prime \prime}(0)=\ldots, \quad f^{\prime \prime \prime}(0)=\ldots, \quad f^{\prime \prime \prime \prime}(0)=
$$

(b) Determine the first five terms of Taylor series associated to $f(x)=\exp (x)$ at $c=0$.
(c) Based on your investigations above, what do you think the Taylor series associated to $\exp (x)$ centred at $c=0$ is?
2. Consider $f(x)=x^{3}-10 x^{2}+3 x-2$.
(a) Determine

$$
f(2)=\ldots, \quad f^{\prime}(2)=\ldots, \quad f^{\prime \prime}(2)=\ldots, \quad f^{\prime \prime \prime}(2)=\ldots, \quad f^{\prime \prime \prime \prime}(2)=
$$

(b) What is $f^{(n)}(2)$, for $n \geq 5$?
(c) Write down the Taylor series associated to $f(x)$ centred at $c=2$.

