

APRIL 5 LECTURE

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Taylor Series, Integral Calculus, Khan Academy

KEYWORDS: centre, coefficients, Taylor series

The centre & coefficients; Taylor series

In this lecture we will investigate the role of the centre of a power series. Then, we will begin an investigation into the conditions that a function f(x) must satisfy in order for it to possess a power series representation (centred at c): this will lead us to the **Taylor series of** f(x).

The centre

The function $f(x) = \frac{1}{1-x}$ has power series representation

$$f(x) = 1 + \sum_{n=1}^{\infty} x^n$$
, valid whenever $-1 < x < 1$

Let's do something wacky: we can write

$$f(x) = \frac{1}{1-x} = \frac{1}{2-(x+1)} = \underline{\qquad}$$

Expanding

which is valid whenever

In particular, we've determine a power series represention of $f(x) = \frac{1}{1-x}$ centred at c = -1:

	f(x) =	
valid whenever	< x <	

Question:

How do we interpret this power series expansion of $f(x) = \frac{1}{1-x}$ centred at c = -1?

Consider the graph of $f(x) = \frac{1}{1-x}$:

CHECK YOUR UNDERSTANDING

- 1. Based on the above observation, what do you expect to the the interval of convergence for a power series representation of $f(x) = \frac{1}{1-x}$ centred at c = -5?
- 2. Verify your guess by writing down the first four nonzero terms of the power series representation $\sum_{n=0}^{\infty} c_n (x+5)^n$ for $f(x) = \frac{1}{1-x}$ centred at c = -5. *Hint: perform a similar computation as above.*

The coefficients

Recall that a power series $\sum_{n=0}^{\infty} c_n (x-c)^n$ is completely determined by its **centre** and its **coefficients**

Question:

Can we determine the coefficients of the power series representation of $f(x) = \frac{1}{1-x}$ centred at c = -5 without playing the calculus/series game?

Thankfully, yes!

MATHEMATICAL WORKOUT Let $f(x) = \frac{1}{1-x}$.

1. Using induction show that

$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}, \quad n = 1, 2, 3, \dots$$

Here $f^{(n)}(x)$ is the n^{th} derivative of f(x). Hint: $f^{(n+1)}(x) = \frac{d}{dx}f^{(n)}(x)$. BASE CASE:

INDUCTIVE STEP:

2. Compute the following quantities:

f(-5) =_____, f'(-5) =_____, f''(-5) =_____, f'''(-5) =_____

3. What is the relationship between the values just computed and the coefficients c_0, c_1, c_2, c_3 you obtained for the power series representation of $f(x) = \frac{1}{1-x}$ at c = -5?

Taylor Series

We are interested in the following problem.

Problem: Let f(x) be a given function.

- 1. Does f(x) admit a power series representation? If so, how do we determine it?
- 2. For which x is the power series representation valid?

Definition: Let f(x) be an infinitely differentiable function. The **Taylor series associated to** f(x) centred at c is the series

$$\sum_{n=0}^{\infty} (x-c)^n = _$$

When c = 0 the Taylor series associated to f(x) is also called the Maclaurin series of f(x) (after the Scottish mathematician Colin Maclaurin (1698-1746)).

Remark: [IMPORTANT!]

At this time, the Taylor series of f(x) centred at c is a series that we are **associating** to f(x); we are **not** saying that the Taylor series is equal to f(x). We will investigate when the Taylor series equals f(x) in the next lecture.

Example:

Let $f(x) = \sin(x)$. Then, f(x) is an infinitely differentiable function and we can determine its associated Taylor series at c = 0 (i.e. the Maclaurin series). We compute

$$f(0) = _$$

 $f'(0) = _$
 $f''(0) = _$
 \vdots

In general

$$f^{(n)}(0) = \begin{cases} & & \text{if } n \text{ even,} \\ & & \\$$

Hence, the Taylor series associated to $f(x) = \sin(x)$ at c = 0 is

CHECK YOUR UNDERSTANDING

1. Let

$$f(x) = \exp(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$$

(a) Determine

$$f(0) = _, f'(0) = _, f''(0) = _, f'''(0) = _, f'''(0) = _, f'''(0) = _$$

(b) Determine the first five terms of Taylor series associated to $f(x) = \exp(x)$ at c = 0.

- (c) Based on your investigations above, what do you think the Taylor series associated to $\exp(x)$ centred at c = 0 is?
- 2. Consider $f(x) = x^3 10x^2 + 3x 2$.
 - (a) Determine

$$f(2) =$$
____, $f'(2) =$ ____, $f''(2) =$ ____, $f'''(2) =$ ____, $f''''(2) =$ _____, $f''''(2) =$ _____,

- (b) What is $f^{(n)}(2)$, for $n \ge 5$?
- (c) Write down the Taylor series associated to f(x) centred at c = 2.