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Power Series II

Recall that a power series is a series of the form

∞∑
n=0

cn(x− c)n

We are interested in determining those x for which the power series is convergent. We have seen
that there is a largest interval on which the power series converges. Moreover, there are three
possibilities for the interval of convergence of a power series:

1. the interval of convergence is a single point x = c;

2. the interval of convergence is a finite interval of the form

(c−R, c+R), or [c−R, c+R], or (c−R, c+R], or [c−R, c+R)

for some R (the radius of convergence)

3. the interval of convergence is (−∞,∞)

On the interval of convergence, the power series gives a well-defined function. Today we will
investigate the properties of this function.

Properties of functions represented by power series
Given a power series

∑∞
n=0 cn(x− c)n with interval of convergence I, we can define a function

f(x) =
∞∑
n=0

cn(x− c)n, for x in I.

Any function defined in this way admits the following properties:
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Properties of functions defined by power series:

• f(x) is differentiable (and therefore continuous) on I and

f ′(x) = c1 + 2c2(x− c) + 3c3(x− c)2 + . . .

i.e. the power series can be differentiated term-by-term.

• f(x) is integrable and∫
f(x)dx = C + c0(x− c) +

c1
2

(x− 1)2 +
c2
3

(x− c)3 + . . .

i.e. the power series can be integrated term-by-term.

Moreover, the series obtained by differentiation/integration are centred at c and
have the same radius of convergence as f(x). The endpoints of the interval of
convergence need to be given further investigation.

These results will be very useful in giving power series representations of well-known functions.

Example:

1. Recall that if |x| < 1 then

1 +
∞∑
n=1

xn = =

Hence, we have

1

(1− x)2
=

d

dx

(
1

1− x

)

=
d

dx
( )

=

Thus, we have found a power series representation of f(x) = 1
(1−x)2 centred at c = 0.

2. Consider the function f(x) = 1
(1−3x)2 . We will determine a power series representation of

this function centred at c = 0.

First, we record the essential observation:

f(x) =
1

3

[
d

dx

(
1

1− 3x

)]
Using geometric series, we find a power series representation

1

1− 3x
= 1 +

∞∑
n=1

(3x)n =
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valid whenever |x| < 1
3
. Hence,

f(x) =
1

3

[
d

dx

(
1

1− 3x

)]
=

1

3

[
d

dx

(
1 + 3x+ 9x2 + 27x3 + . . .

)]
= , differentiating term-by-term

=

=

In this case, it can be a bit tricky to write down the coefficients using a formulae. In general,
you should try to find a formula for the coefficients (if asked to so) or write down (at least)
the first four nonzero terms of the power series

3. Observe that
1

1 + x
=

1

1− (−x)
= 1− x+ x2 − x3 + x4 − . . .

This power series representation is valid whenever |x| < 1. Hence,

ln(1 + x) =

∫
1

1 + x
dx =

∫
(1− x+ x2 − x3 + x4 − x5 + . . .)dx

=

As 0 = ln(1) we find C = 0.

The radius of convergence of 1
1+x

is R = 1 (because 1
1+x

converges when −1 < x < 1), and
the radius of convergence of the power series expansion of ln(1 + x) is also R = 1. However,
when x = 1 the series is convergent (by Alternating Series Test), and we determine the limit

ln(2) = 1− 1

2
+

1

3
+

1

4
− 1

5
+

1

6
− . . .

4. The following series expansion of arctan(x) was first given by James Gregory, a 17th century
Scottish mathematician (who lived < 10 miles from where I grew up!).

Recall that

arctan(x) =

∫
1

1 + x2
dx

Now, since
1

1 + x2
=

1

1− (−x2)
= 1− x2 + x4 − x6 + x8 − . . .

we find

arctan(x) =

∫
1

1 + x2
dx =

∫
1− x2 + x4 − x6 + x8 − . . . dx
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=

Since arctan(0) = 0 we find C = 0.

The radius of convergence of 1
1+x2 is R = 1 so that same is true of the power series repre-

sentation of arctan(x). When x = 1, the series converges (by Alternating Series Test) so
that

π

4
= arctan(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

In this way,we obtain a series approximation to π:

π = 4− 4

3
+

4

5
− 4

7
+

4

9
− . . .

However, this series approximation is quite inefficient: we require 100 terms of the above
series to obtain a value that’s correct to two decimal places; calculating π correct to 10
decimal places requires approx. five billion terms!

This approximation was first discovered by the Indian mathematician Madhava of Sangama-
grama in the 14th Century, and later rediscovered by Gottfried Leibniz in the 17th Century.

In 1910 the Indian mathematician Srinivisa Ramanujan (at the age of 23) discovered the
following series expansion

1

π
=

2
√

2

9801

∞∑
n=0

(4n)!(1103 + 26390n)

(n!)43964n

This series can be used to compute approximations to π with incredible speed: the first term
of this series is

2206
√

2

9801
=⇒ 9801

2206
√

2
= 3.14159273001 . . .
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