

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

APRIL 30 LECTURE

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 8.1.

- Integral Calculus, Khan Academy: Area & arc length using calculus.

KEYWORDS: surface area, surface of revolution

APPLICATIONS OF INTEGRATION: SURFACE AREA & SURFACES OF REVOLUTION

In the last lecture I was frustrated by the frustrum! Let's sort things out.

We are trying to determine the surface area of the general frustrum F obtained by rotating a line segment y = mx + c, $a \le x \le b$, around the x-axis.

$$y = mx + c$$

$$a \le x \le b$$

To determine the surface area of F we cut the frustrum along a line and unroll it in the plane we obtain a circular sector having radius r and angle θ with a concentric sector of radius r-s removed.

We have

$$r_1 = ma + c,$$
 $r_2 = mb + c$

and using the formula for the length of the line segment y = mx + c, $x_1 \le x \le x_2$,

$$(x_2-x_1)\sqrt{1+m^2}$$

we determine

$$s = \left(a + \frac{c}{m}\right)\sqrt{1 + m^2}, \qquad r = \left(b + \frac{c}{m}\right)\sqrt{1 + m^2}$$

Moreover, since p = r - s, we obtain

$$\theta p = \theta(r - s) = 2\pi(r_2 - r_1) = 2\pi m(b - a)$$

Here we use the fact that $\theta s = 2\pi r_1$ (resp. $\theta r = 2\pi r_2$) is the length of a circular arc appearing above. Now, the area of F is given by

$$A = \frac{\theta}{2\pi}\pi(r^2 - s^2) = \frac{\theta}{2}p(r+s) = \pi m(b-a)\sqrt{1+m^2}\left(a+b+\frac{2c}{m}\right)$$

$$\implies A = 2\pi\sqrt{1+m^2}\left(\frac{m}{2}(b^2 - a^2) + c(b-a)\right) \tag{*}$$

PHEW!

CHECK YOUR UNDERSTANDING

Let f(x) = mx + c. Show that A given in (*) can be computed using a definite integral:

$$A = 2\pi \int_{a}^{b} f(x)\sqrt{1 + f'(x)^{2}}dx$$

$$= 2\pi \int_{a}^{b} (mx + c) \sqrt{1 + m^{2}} dx$$

$$= 2\pi (\sqrt{1 + m^{2}}) \left[\frac{mx^{2}}{2} + cx \right]_{a}^{b}$$

$$= 2\pi \sqrt{1 + m^{2}} \left[\frac{m(b^{2} - a^{2})}{2} + C(b^{2} - a^{2}) \right].$$

We can now approximate the surface area of a surface of revolution using a collection of circular frustrums.

PICTURE

Let S be a surface of revolution obtained from f(x), $a \le x \le b$. Choose a natural number n.

1. Subdivide [a, b] into n subintervals having equal length so that the endpoints of each subinterval are

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

2. Define the piecewise linear function $g_n(x)$ as follows (it's the function whose graph is the collection of line segments above):

$$g_n(x) = m_i(x - x_i) + f(x_i),$$
 when $x_{i-1} \le x \le x_i$.

Here

$$m_i = \underbrace{\frac{f(\chi_i) - f(\chi_{i'})}{\chi_i - \chi_{i'}}}_{\text{max}}$$

The piecewise linear function $g_n(x)$ provides an approximation to the graph of f(x)

3. Then, the surface of revolution S is approximated by a collection of n circular frustrums F_1, \ldots, F_n as in the above diagram. Moreover,

Surface area of
$$F_i = \frac{2\pi}{n} \int_{-\infty}^{\infty} g_n(n) \int_{-\infty}^{\infty} 1+g_n(x)^2 dx$$

4. Hence, the surface area of S is obtained as the limit

Surface area of
$$S = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \int_{x_{i-1}}^{x_i} \sqrt{1 + (g'_n(x))^2} g_n(x) dx$$

$$= \underbrace{2\pi}_{c} f(x) \underbrace{\int_{x_{i-1}}^{x_i} \sqrt{1 + (g'_n(x))^2} dx}_{c}$$

Example: The surface area A of the surface of revolution about the x-axis obtained from $f(x) = 2\sqrt{x}$ when $1 \le x \le 2$ is

$$A = 2\pi \int_{1}^{2} \sqrt{1 + \frac{1}{x}} 2\sqrt{x} dx = 4\pi \int_{1}^{2} \sqrt{x + 1} dx = 4\pi \left[\frac{2}{3} (x + 1)^{3/2} \right]_{1}^{2} = \frac{8\pi}{3} \left(\sqrt{27} - \sqrt{8} \right)$$

CHECK YOUR UNDERSTANDING

The surface of the ball of radius a > 0 can be realised as a surface of revolution of the function $f(x) = \sqrt{a^2 - x^2}$, $-a \le x \le a$.

1. Show that

$$1+f'(x)^{2} = \frac{a^{2}}{a^{2}-x^{2}}$$

$$1+f'(x)^{2} = 1+\left(\frac{-x}{\sqrt{\alpha^{2}-x^{2}}}\right)^{2}$$

$$= 1+\frac{x^{2}}{a^{2}-x^{2}}$$

$$= \frac{\alpha^{2}-x^{2}+x^{2}}{\alpha^{2}-x^{2}} = \frac{\alpha^{2}}{\alpha^{2}-x^{2}}$$

2. Show that

Show that
$$f(x)\sqrt{1+f'(x)^2} = a$$

$$f(x)\sqrt{1+f'(x)^2} = \sqrt{a^2}$$

$$\frac{a^2}{a^2}$$

3. Use the formula for surface area of a surface of revolution and deduce the well-known formula for the surface area A of a ball of radius a:

$$A = 4\pi a^{2}$$

$$2\pi \int a^{2} - x^{2} \int a^{2} dx = 2\pi \int a dx$$

$$= 2\pi \int a dx$$

$$= 2\pi \int a dx$$

$$= 2\pi \int a dx$$