Calculus II：Spring 2018

Contact：gmelvin＠middlebury．edu

April 30 Lecture

Supplementary References：
－Single Variable Calculus，Stewart，7th Ed．：Section 8．1．
－Integral Calculus，Khan Academy：Area \＆arc length using calculus．
KEywords：surface area，surface of revolution

Applications of integration：Surface Area \＆Surfaces of Revolution

In the last lecture I was frustrated by the frustrum！Let＇s sort things out．
We are trying to determine the surface area of the general frustrum F obtained by rotating a line segment $y=m x+c, a \leq x \leq b$ ，around the x－axis．

$$
\begin{gathered}
y=m x+c \\
a \leq x \leq b
\end{gathered}
$$

To determine the surface area of F we cut the frustrum along a line and unroll it in the plane we obtain a circular sector having radius r and angle θ with a concentric sector of radius $r-s$ removed．

We have

$$
r_{1}=m a+c, \quad r_{2}=m b+c
$$

and using the formula for the length of the line segment $y=m x+c, x_{1} \leq x \leq x_{2}$ ，

$$
\left(x_{2}-x_{1}\right) \sqrt{1+m^{2}}
$$

we determine

$$
s=\left(a+\frac{c}{m}\right) \sqrt{1+m^{2}}, \quad r=\left(b+\frac{c}{m}\right) \sqrt{1+m^{2}}
$$

Moreover, since $p=r-s$, we obtain

$$
\theta p=\theta(r-s)=2 \pi\left(r_{2}-r_{1}\right)=2 \pi m(b-a)
$$

Here we use the fact that $\theta s=2 \pi r_{1}$ (resp. $\theta r=2 \pi r_{2}$) is the length of a circular arc appearing above. Now, the area of F is given by

$$
\begin{gather*}
A=\frac{\theta}{2 \pi} \pi\left(r^{2}-s^{2}\right)=\frac{\theta}{2} p(r+s)=\pi m(b-a) \sqrt{1+m^{2}}\left(a+b+\frac{2 c}{m}\right) \\
\Longrightarrow A=2 \pi \sqrt{1+m^{2}}\left(\frac{m}{2}\left(b^{2}-a^{2}\right)+c(b-a)\right) \tag{*}
\end{gather*}
$$

PHEW!

Check your understanding

Let $f(x)=m x+c$. Show that A given in $(*)$ can be computed using a definite integral:

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

We can now approximate the surface area of a surface of revolution using a collection of circular frustrums.

Picture

Let S be a surface of revolution obtained from $f(x), a \leq x \leq b$. Choose a natural number n.

1. Subdivide $[a, b]$ into n subintervals having equal length so that the endpoints of each subinterval are

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

2. Define the piecewise linear function $g_{n}(x)$ as follows (it's the function whose graph is the collection of line segments above):

$$
g_{n}(x)=m_{i}\left(x-x_{i}\right)+f\left(x_{i}\right), \quad \text { when } x_{i-1} \leq x \leq x_{i} .
$$

Here

$$
m_{i}=
$$

\qquad
The piecewise linear function $g_{n}(x)$ provides an approximation to the graph of $f(x)$
3. Then, the surface of revolution S is approximated by a collection of n circular frustrums F_{1}, \ldots, F_{n} as in the above diagram. Moreover,

Surface area of $F_{i}=$ \qquad
4. Hence, the surface area of S is obtained as the limit

Surface area of $S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \int_{x_{i-1}}^{x_{i}} \sqrt{1+\left(g_{n}^{\prime}(x)\right)^{2}} g_{n}(x) d x$
$=$

Example: The surface area A of the surface of revolution about the x-axis obtained from $f(x)=$ $2 \sqrt{x}$ when $1 \leq x \leq 2$ is

$$
A=2 \pi \int_{1}^{2} \sqrt{1+\frac{1}{x}} 2 \sqrt{x} d x=4 \pi \int_{1}^{2} \sqrt{x+1} d x=4 \pi\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{1}^{2}=\frac{8 \pi}{3}(\sqrt{27}-\sqrt{8})
$$

Check your understanding

The surface of the ball of radius $a>0$ can be realised as a surface of revolution of the function $f(x)=\sqrt{a^{2}-x^{2}},-a \leq x \leq a$.

1. Show that

$$
1+f^{\prime}(x)^{2}=\frac{a^{2}}{a^{2}-x^{2}}
$$

2. Show that

$$
f(x) \sqrt{1+f^{\prime}(x)^{2}}=a
$$

3. Use the formula for surface area of a surface of revolution and deduce the well-known formula for the surface area A of a ball of radius a :

$$
A=4 \pi a^{2}
$$

