

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

APRIL 2 LECTURE

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Power Series, Integral Calculus, Khan Academy

KEYWORDS: power series, interval of convergence

POWER SERIES

Recall the series

$$1+\sum_{n=1}^{\infty}\frac{x^n}{n!}$$

This series is convergent for any x and we are able to define the exponential function

$$\exp(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

with domain being the collection of all real numbers.

CHECK YOUR UNDERSTANDING
Let x be a real number. Consider the geometric series

$$G(x) = 1 + \sum_{n=1}^{\infty} x^n$$

1. G(x) converges for all x satisfying

2. G(x) defines a function with domain

3. Since $\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$, whenever this series converges,

$$G(x) = 1 + \sum_{n=1}^{\infty} x^n = 1 + \frac{x}{1 - x} = \frac{1}{1 - x}$$

whenever -1 < x < 1

Hence, G(x) gives a series representation of a well-known function $f(x) = \frac{1}{1-\kappa}$ whenever $f(x) = \frac{1}{1-\kappa}$ when $f(x) = \frac{1}{1-\kappa}$ when $f(x) = \frac{1}{1-\kappa}$ when $f(x) = \frac{1}{1-\kappa}$ whenever

1. The series

$$F(x) = 1 + \sum_{n=1}^{\infty} 2^n x^n$$

is convergent whenever

$$|2x| < \underline{\hspace{1cm}} \Leftrightarrow \underline{\hspace{1cm}} \frac{}{} \checkmark x < \underline{\hspace{1cm}} \checkmark \underline{\hspace{1cm}}$$

Since F(x) = G(2x), we obtain

$$F = (x) = 1 + \sum_{n=1}^{\infty} 2^n x^n = \frac{1}{1 - 2x}$$

whenever $-\frac{1}{2} < x < \frac{1}{2}$

2. The series

$$H(x) = \frac{3}{2} + \sum_{n=1}^{\infty} 3 \frac{x^n}{2^{n+1}}$$

is convergent whenever

$$\left|\frac{x}{2}\right| < \underline{\qquad \qquad \qquad } \iff \underline{\qquad \qquad } < x < \underline{\qquad \qquad }$$

Since $H(x) = \frac{3}{2} \mathbb{Z}(\frac{x}{2})$, we obtain

$$H(x) = \frac{3}{2} \left(1 + \sum_{n=1}^{\infty} \frac{x^n}{2^n} \right) = \frac{3}{2} \left(\frac{1}{1 - \frac{x}{2}} \right) = \frac{3}{2 - \frac{x}{2}}$$

For the next couple of weeks we are going to investigate functions that can be represented by series, similar to what we've seen above.

Definition: A power series is a series of the form

$$c_0 + \sum_{n \ge 1} c_n (x - c)^n$$

where c_0, c_1, c_2, \ldots and c are constant, and x is a variable. We call c the **centre** of the power series, c_0, c_1, \ldots the **coefficients** of the power series.

Remark:

- 1. Observe that a power series is completely determined by its centre c and the coefficients $c_0, c_1, c_2, c_3, \ldots$ any two power series possessing the same centre and coefficients are the same power series.
- 2. We will frequently write

$$\sum_{n=0}^{\infty} c_n (x-c)^n$$

as shorthand for a power series.

Example: The power series

$$1 + \sum_{n=1}^{\infty} \frac{(x+1)^n}{3^n(n+1)}$$

has centre c = -1 and $c_n = \frac{1}{3^n(n+1)^n}$, n = 0, 1, 2, 3, ...

Basic Question: For which x does a power series give a well-defined function?

Let's use the Ratio Test to determine where the series above is convergent. Let $a_n = \frac{(x+1)^n}{3^n(n+1)}$ Then,

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(x+1)^{n+1}}{3^{n+1}(n+2)} \frac{3^n (n+1)}{(x+1)^n} \right| = |x+1| \left(\frac{1}{3} \cdot \frac{n+1}{n+2} \right)$$

and,

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}|x+1|\left(\frac{1}{3}.\frac{n+1}{n+2}\right)=\frac{|x+1|}{3}$$

Hence, this series

converges whenever $|x+1| < 3 \implies -4 < x < 2$

What about when |x+1| = 3? We have to check directly: CHECK YOUR UNDERSTANDING

•
$$(x+1) = \frac{3}{3}$$
 i.e $x = 2$
 $1 + \sum_{n=1}^{\infty} \frac{(z+1)^n}{3^n (n+1)} = 1 + \sum_{n=1}^{\infty} \frac{1}{n+1}$ divergent

•
$$(x+1) = \frac{-3}{0}$$
 i.e $x = -4$
1+ $\sum_{n=1}^{\infty} \frac{(-3)^n}{5^n (n+1)} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$ convergent, by AST.

Hence, the series

is convergent when
$$-4 \le z < 2$$
 and divergent otherwise.

Definition: Let $\sum_{n=0}^{\infty} c_n(x-c)^n$ be a power series. The largest interval on which the power series converges is called the interval of convergence.

There are three possibilities for the interval of convergence of a power series:

- 1. the interval of convergence is a single point x = c;
- 2. the interval of convergence is a finite interval of the form

$$(c-R, c+R)$$
, or $[c-R, c+R]$, or $(c-R, c+R]$, or $[c-R, c+R)$

for some R (the radius of convergence)

3. the interval of convergence is $(-\infty, \infty)$

Example:

1. Consider the exponential series

$$\exp(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

This is a power series centred at c=0, and $c_n=\frac{1}{n!}$, for $n=0,1,2,3,4,\ldots$ The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{n!} \right| = \lim_{n \to \infty} (n+1) = +\infty$$

Hence, we recover the fact that $\exp(x)$ is well-defined for all x i.e. the series converges for all x.

2. Consider the power series

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$$

This is a power series centred at c=1 and $c_n=\frac{1}{n}$, for $n=1,2,3,\ldots$ The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

Hence, the power series

- (a) converges when |x-1| < 1 i.e. when 0 < x < 2, and
- (b) diverges when |x-1| > 1 i.e. when x > 2 or x < 0.

If |x-y|=1 then x=0 or x=2 and we have two separate cases to consider:

• x = 0: In this case the power series is

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$