Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 2 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.8, 11.9
- Power Series, Integral Calculus, Khan Academy

KEywords: power series, interval of convergence

Power Series

Recall the series

$$
1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}
$$

This series is convergent for any x and we are able to define the exponential function

$$
\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}
$$

with domain being the collection of all real numbers.
Check your understanding
Let x be a real number. Consider the geometric series

$$
G(x)=1+\sum_{n=1}^{\infty} x^{n}
$$

1. $G(x)$ converges for all x satisfying
\qquad $<x<$
2. $G(x)$ defines a function with domain
\qquad $<x<$ \qquad
3. Since $\sum_{n=1}^{\infty} x^{n}=$ \qquad , whenever this series converges,

$$
G(x)=1+\sum_{n=1}^{\infty} x^{n}=
$$

\qquad
whenever \qquad $<x<$ \qquad
Hence, $G(x)$ gives a series representation of a well-known function \qquad whenever
\qquad $<x<$ \qquad _.

Example:

1. The series

$$
F(x)=1+\sum_{n=1}^{\infty} 2^{n} x^{n}
$$

is convergent whenever

$$
|2 x|<\ldots \quad<\quad<x<
$$

Since $F(x)=G(2 x)$, we obtain

$$
G(x)=1+\sum_{n=1}^{\infty} 2^{n} x^{n}=
$$

whenever \qquad $<x<$ \qquad
2. The series

$$
H(x)=\frac{3}{2}+\sum_{n=1}^{\infty} 3 \frac{x^{n}}{2^{n+1}}
$$

is convergent whenever

$$
\left|\frac{x}{2}\right|<\ldots \quad<\quad<x<
$$

Since $H(x)=\frac{3}{2} F\left(\frac{x}{2}\right)$, we obtain

$$
H(x)=\frac{3}{2}\left(1+\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}\right)=
$$

\qquad
whenever \qquad $<x<$ \qquad .

For the next couple of weeks we are going to investigate functions that can be represented by series, simialr to what we've seen above.
Definition: A power series is a series of the form

$$
c_{0}+\sum_{n \geq 1} c_{n}(x-c)^{n}
$$

where $c_{0}, c_{1}, c_{2}, \ldots$ and c are constant, and x is a variable. We call c the centre of the power series, c_{0}, c_{1}, \ldots the coefficients of the power series.

Remark:

1. Observe that a power series is completely determined by its centre c and the coefficients $c_{0}, c_{1}, c_{2}, c_{3}, \ldots:$ any two power series possessing the same centre and coefficients are the same power series.
2. We will frequently write

$$
\sum_{n=0}^{\infty} c_{n}(x-c)^{n}
$$

as shorthand for a power series.

Example: The power series

$$
1+\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{3^{n}(n+1)}
$$

has centre $c=-1$ and $c_{n}=\frac{1}{3^{n}(n+1)^{n}}, n=0,1,2,3, \ldots$.

Basic Question: For which x does a power series give a well-defined function?

Let's use the Ratio Test to determine where the series above is convergent. Let $a_{n}=\frac{(x+1)^{n}}{3^{n}(n+1)}$. Then,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(x+1)^{n+1}}{3^{n+1}(n+2)} \frac{3^{n}(n+1)}{(x+1)^{n}}\right|=|x+1|\left(\frac{1}{3} \cdot \frac{n+1}{n+2}\right)
$$

and,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}|x+1|\left(\frac{1}{3} \cdot \frac{n+1}{n+2}\right)=\frac{|x+1|}{3}
$$

Hence, this series

- diverges whenever $|x+1|>\underline{ } \quad \Longrightarrow \quad$ _

What about when $|x+1|=$ \qquad ? We have to check directly:

Check your understanding

- $(x+1)=$ \qquad
- $(x+1)=$ \qquad

Hence, the series

$$
1+\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{3^{n}(n+1)}
$$

is convergent when \qquad and divergent otherwise.

Definition: Let $\sum_{n=0}^{\infty} c_{n}(x-c)^{n}$ be a power series. The largest interval on which the power series converges is called the interval of convergence.
There are three possibilities for the interval of convergence of a power series:

1. the interval of convergence is a single point $x=c$;
2. the interval of convergence is a finite interval of the form $(c-R, c+R), \quad$ or $\quad[c-R, c+R], \quad$ or $\quad(c-R, c+R], \quad$ or $\quad[c-R, c+R)$ for some R (the radius of convergence)
3. the interval of convergence is $(-\infty, \infty)$

Example:

1. Consider the exponential series

$$
\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}
$$

This is a power series centred at $c=0$, and $c_{n}=\frac{1}{n!}$, for $n=0,1,2,3,4, \ldots$. The radius of convergence is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!}\right|=\lim _{n \rightarrow \infty}(n+1)=+\infty
$$

Hence, we recover the fact that $\exp (x)$ is well-defined for all x i.e. the series converges for all x.
2. Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}
$$

This is a power series centred at $c=1$ and $c_{n}=\frac{1}{n}$, for $n=1,2,3, \ldots$ The radius of convergence is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n}=1
$$

Hence, the power series
(a) converges when $|x-1|<1$ i.e. when $0<x<2$, and
(b) diverges when $|x-1|>1$ i.e. when $x>2$ or $x<0$.

If $|x-1|=1$ then $x=0$ or $x=2$ and we have two separate cases to consider:

- $x=0$: In this case the power series is

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This series is convergent by the Alternating Series Test.

- $x=2$: In this case the power series is

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

This series is divergent.
Hence, the power series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$ is convergent when $0 \leq x<2$, and divergent otherwise.
3. Consider the power series

$$
\sum_{n=0}^{\infty} n!(1-x)^{n}=\sum_{n=0}^{\infty} n!(-1)^{n}(x-1)^{n}
$$

We have coefficients $c_{n}=(-1)^{n} n$!. The centre of the power series is $c=1$ and the radius of convergence is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n} n!}{(-1)^{n+1}(n+1)!}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0 .
$$

Hence, the radius of convergence is $R=0$. Thus, the series converges at $x=1$ and diverges for $x \neq 1$.

