Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 27 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 8.1.
- Integral Calculus, Khan Academy: Area \& arc length using calculus.

KEywords: surface area, surface of revolution

Applications of integration: Surface Area \& Surfaces of Revolution

In this lecture we will investigate further applications of integration. We introduce the Slice Method and determine the surface area and volume of a class of solids known as surfaces of revolution.

Surface Area

Suppose that R is a nice surface lying along side the interval $[a, b]$ of the x-axis. We would like to develop a method to compute the surface area of R. First we determine the surface area of some elementary surfaces.

Mathematical workout - Flex those muscles
Let F be the circular frustrum obtained by rotating the line segment $y=x, 1 \leq x \leq 2$, around the x-axis.

Let's determine the surface area of F. If we cut F along a line and unroll it in the plane we obtain a circular sector having radius r and angle θ with a concentric sector of radius $r-s$ removed.

1. What are the numerical values of r_{1} and r_{2} in the above figure?
2. What are the numerical values of r, s ? (Hint: r, s can be realised as the distance between two points in the plane; which two points?)
3. Recall that, by the definition of radians, $\theta r=2 \pi r_{2}$ (similarly, $\theta s=2 \pi r_{1}$). Hence,

$$
\theta=
$$ -.

4. Given that the area of a circular sector having angle t and radius R is $\frac{t}{2 \pi} \pi R^{2}$, show that the area of the frustrum F is $3 \sqrt{2} \pi$.

Area of a general frustrum Let's generalise our investigation above to the general case: let $y=m x+c$ be a line segment lying in the upper half plane defined between $x=a$ and $x=b$. Assume $m \neq 0$. If we rotate this line segment around the x-axis we obtain a circular frustrum F.

To determine the surface area of F we proceed as above and determine the area of the ring sector below.

Define $p=r-s$. Then,

$$
r_{1}=\ldots \quad r_{2}=
$$

Since $\theta r=2 \pi r_{2}$ and $\theta s=2 \pi r_{1}$, we have

$$
\theta p=2 \pi\left(r_{2}-r_{1}\right) \quad \Longrightarrow \quad \theta=
$$

Recall that the length of a straight line segment $y=m x+c$, between $x=x_{1}$ and $x=x_{2}$, is $\left(x_{2}-x_{1}\right) \sqrt{1+m^{2}}$. Hence,

$$
s=\ldots \quad p=
$$

Finally, the area A of the frustrum F is

$$
A=\frac{\theta}{2 \pi} \pi\left(r^{2}-s^{2}\right)=\frac{\theta}{2} p(r+s)=
$$

\qquad

Check your understanding

Let $f(x)=m x+c$. Show that the area A of the frustrum F satisfies

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Remark: The integral formula just given for the area of a circular frustrum is also valid when $m=0$ i.e. when F is a cylinder having radius c and height $(b-a)$: recall that the area of a cylinder having radius c and height h is $2 \pi c^{2} h$.

Surface area of surfaces of revolution

In this paragraph we will determine the surface area of the class of surfaces known as surfaces of revolution.

Let $f(x)$ be a nonegative function whose derivative is continuous on the interval $[a, b]$ i.e. $f(x) \geq 0$, for all $a \leq x \leq b$. The surface obtained by rotating the graph $y=f(x)$ about the x-axis is known as a surface of revolution.

Remark: If $g(y)$ is a function, defined on the interval $c \leq y \leq d$, then the surface obtained by revolving the graph $x=g(y)$ about the y-axis is also known as a surface of revolution. The two definitions are equivalent: one is obtained from the other by reflecting acros the line/plane $y=x$.

Example:

1. Let $f(x)=m x+c$, and $[a, b]$ be an interval on which $f(x)$ is nonegative. Then, the graph of $f(x)$ is a line segment. The surface of revolution about the x-axis is either:
(a) a circular frustrum (similar to the diagram on p. 1 above);
(b) a circular cone;
(c) a cylinder.

Picture
2. Let $r>0$. Consider the function $f(x)=\sqrt{r^{2}-x^{2}}$. Then, the surface of revolution obtained from $f(x)$ is the sphere having radius r.
Picture

We can now approximate the surface area of a surface of revolution using a collection of circular frustrums.
Picture

Let S be a surface of revolution obtained from $f(x), a \leq x \leq b$. Choose a natural number n.

1. Subdivide $[a, b]$ into n subintervals having equal length so that the endpoints of each subinterval are

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

2. Define the piecewise linear function $g_{n}(x)$ as follows:

$$
g_{n}(x)=m_{i}\left(x-x_{i}\right)+f\left(x_{i}\right), \quad \text { when } x_{i-1} \leq x \leq x_{i} .
$$

Here

$$
m_{i}=
$$

\qquad
The piecewise linear function $g_{n}(x)$ provides an approximation to the graph of $f(x)$
3. Then, the surface of revolution S is approximated by a collection of n circular frustrums F_{1}, \ldots, F_{n} as in the above diagram. Moreover,

Surface area of $F_{i}=$ \qquad
4. Hence, the surface area of S is obtained as the limit

Example: The surface area A of the surface of revolution about the x-axis obtained from $f(x)=$ $2 \sqrt{x}$ when $1 \leq x \leq 2$ is

$$
A=2 \pi \int_{1}^{2} \sqrt{1+\frac{1}{x}} 2 \sqrt{x} d x=4 \pi \int_{1}^{2} \sqrt{x+1} d x=4 \pi\left[\frac{2}{3}(x+1)^{3 / 2}\right]_{1}^{2}=\frac{8 \pi}{3}(\sqrt{27}-\sqrt{8})
$$

