Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 18 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.4.
- Calculus, Spivak, 3rd Ed.: Section 19.
- AP Calculus BC, Khan Academy: Antiderivatives and the fundamental theorem of calculus. KEYWORDS: polynomial long division, partial fractions

Techniques of Integration IV. Partial Fractions.

In this lecture we will focus on the method of partial fractions. This method allows us to split up a rational function as a sum of elementary rational functions. In this way we will devise an approach to solving the antiderivative problem for a large class of rational functions.

Rational Functions

Let $f(x)$ be a function.

1. We say that $f(x)$ is a polynomial function if it can be written

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0},
$$

where a_{n}, \ldots, a_{0} are constants. If $a_{n} \neq 0$ then we say that $f(x)$ has degree n and write $\operatorname{deg} f(x)=n$.
2. We say that $f(x)$ is a rational function if it can be written

$$
f(x)=\frac{P(x)}{Q(x)},
$$

where $P(x)$ and $Q(x)$ are polynomial functions.
Example The following functions are polynomials having degree 3,5,8

$$
f(x)=2 x^{3}-x^{2}+10 x+1, \quad g(x)=5 x^{5}+3 x-1, \quad h(x)=7 x^{8}+2 x^{2} .
$$

The following functions are rational functions

$$
\frac{7 x^{8}+2 x^{2}}{2 x^{3}-x^{2}+10 x+1}, \quad \frac{5 x^{5}+3 x-1}{7 x^{8}+2 x^{2}}, \quad \frac{5 x^{5}+3 x-1}{2 x^{3}-x^{2}+10 x+1}
$$

Long division of polynomial functions

Let $f(x)=\frac{P(x)}{Q(x)}$ be a rational function where $\operatorname{deg} P(x) \geq \operatorname{deg} Q(x)$. Then, there exists polynomial functions $b(x)$ and $r(x)$, where $\operatorname{deg} r(x)<\operatorname{deg} Q(x)$ so that

$$
f(x)=\frac{P(x)}{Q(x)}=b(x)+\frac{r(x)}{Q(x)}
$$

Example: Consider the rational function

$$
f(x)=\frac{4 x^{4}-6 x^{3}+x-3}{2 x^{2}-x+4}
$$

Then, the method of long division of polynomial proceeds as follows (it's analogous to long division of integers - replace x by 10):

$$
\left.2 x^{2}-x+4\right) \begin{array}{r}
2 x^{2}-2 x-5 \\
\cline { 2 - 3 } \begin{array}{r}
4 x^{4}-6 x^{3}+x-3 \\
-4 x^{4}+2 x^{3}-8 x^{2} \\
-4 x^{3}-8 x^{2}
\end{array}+x \\
\frac{4 x^{3}-2 x^{2}+8 x}{-10 x^{2}+9 x}-3 \\
\frac{10 x^{2}-5 x+20}{4 x+17}
\end{array}
$$

Hence, $b(x)=2 x^{2}-2 x-5$ and $r(x)=4 x+17$. You can check that

$$
\frac{4 x^{4}-6 x^{3}+x-3}{2 x^{2}-x+4}=2 x^{2}-2 x-5+\frac{4 x+17}{2 x^{2}-x+4}
$$

Check your understanding

Perform long division on the following rational function

$$
\frac{2 x^{3}+x^{2}-4}{x^{2}-1}
$$

Complete the following statement

$$
\frac{2 x^{3}+x^{2}-4}{x^{2}-1}=\square+\frac{}{x^{2}-1}
$$

Method of partial fractions

Let $f(x)=\frac{P(x)}{Q(x)}$ be a rational function.

Goal: determine the (indefinite) integral

$$
\int f(x) d x
$$

Check your understanding

Complete the following steps to determine

$$
\int \frac{2 x^{3}+x^{2}-4}{x^{2}-1} d x
$$

You've shown above that

$$
\frac{2 x^{3}+x^{2}-4}{x^{2}-1}=2 x+1+\frac{2 x-3}{x^{2}-1}
$$

Hence, the difficulty lies in determining $\int \frac{2 x-3}{x^{2}-1} d x$.

1. Find constants A and B so that

$$
A(x+1)+B(x-1)=2 x-3 .
$$

2. Observe that $x^{2}-1=(x-1)(x+1)$. Use the previous problem to complete the following statement

$$
\frac{2 x^{3}+x^{2}-4}{x^{2}-1}=\square+\frac{}{x-1}+\frac{}{x+1}
$$

3. Deduce

$$
\int \frac{2 x^{3}+x^{2}-4}{x^{2}-1} d x=
$$

The process of splitting up the rational function $f(x)=\frac{2 x^{3}+x^{2}-4}{x^{2}-1}$ into a sum of simpler rational functions is known as the method of partial fractions.
Example: Determine

$$
\int \frac{x^{4}+2 x}{x^{2}-3 x+2} d x
$$

First, we perform long division to obtain

Hence,

$$
\frac{x^{4}+2 x}{x^{2}-3 x+2}=
$$

\qquad
and we need to determine

$$
\int \longrightarrow d x
$$

Observe that $x^{2}-3 x+2=$ \qquad . We want to find constants A and B such that

$$
\frac{A}{x^{2}-3 x+2}=\frac{A}{x-2}+\frac{B}{x-1}
$$

Multiplying both sides of this equation by $x^{2}-3 x+2$ gives
\qquad $=$ \qquad
We want to determine A, B :

Hence,

$$
\overline{x^{2}-3 x+2}=\frac{}{x-2}-\frac{}{x-1}
$$

Therefore,

$$
\begin{aligned}
\int \frac{x^{4}+2 x}{x^{2}-3 x+2} d x & =\int \square \\
& =
\end{aligned}
$$

In tomorrow's lecture we will formalise and generalise the approach we have taken today so that we can handle more complicated rational functions.

