

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 16 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.3.

- Calculus, Spivak, 3rd Ed.: Section 19

KEYWORDS: inverse trigonometric substitution

TECHNIQUES OF INTEGRATION III. INVERSE TRIGONOMETRIC SUBSTITUTIONS.

Today we investigate the **method of inverse trigonometric substitution**. We will see lots of examples.

Inverse trigonometric substitution

The method of inverse trigonometric substitution proceeds as follows: we are looking to determine

$$\int h(x)dx$$

where h(x) contains one of the following expressions

 $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, $\sqrt{x^2 - a^2}$ where *a* is some constant.

Strategy:

1. Make the following substitution, depending on which of the above expressions appears in h(x):

$x = a\sin(t)$	\leftrightarrow	$\sqrt{a^2 - x^2}$
$x = a \tan(t)$	\leftrightarrow	$\sqrt{a^2 + x^2}$
$x = a \sec(t)$	\leftrightarrow	$\sqrt{x^2 - a^2}$

2. Suppose we've made the substitution x = T(t) above. Write

$$h(T(t))\frac{dx}{dt} = f(t)$$

3. Determine

$$\int f(t)dt$$

4. Substitute $t = T^{-1}(t)$ into the resulting expression.

Useful Trig. Identities				
•	$\sin^2(t) + \cos^2(t) = 1$	•	$\tan^2(t) + 1 = \sec^2(t)$	
•	$\cos^2(t) = \frac{1}{2} \left(1 + \cos(2t) \right)$	•	$\sin^2(t) = \frac{1}{2} \left(1 - \cos(2t) \right)$	

- $\cos(2t) = \cos^2(t) \sin^2(t)$
- $\sin(2t) = 2\sin(t)\cos(t)$

CHECK YOUR UNDERSTANDING Let's determine

$$\int \sqrt{36 - x^2} dx$$

by the method of inverse trigonometric substitution.

1. Let $x = 6\sin(t)$. Show that

$$\sqrt{36 - x^2}\frac{dx}{dt} = 6\cos^2(t)$$

2. Determine

$$\int \cos^2(t) dt$$

3. Given that $x = 6\sin(t)$, complete the following triangle:

4. Combine your answers above to determine

$$\int \sqrt{36 - x^2} dx$$

Hint: you have all the pieces of the puzzle, now see how the **Strategy** *tells you to fit them together.*

CHECK YOUR UNDERSTANDING Let's determine

$$\int \sqrt{x^2 + 1} dx$$

by the method of inverse trigonometric substitution.

1. Let $x = \tan(t)$. Show that

$$\sqrt{x^2 + 1}\frac{dx}{dt} = \cos(t)$$

Hint: $\frac{d}{dt} \tan(t) = \sec^2(t) = \frac{1}{\cos^2(t)}$ and use an appropriate trig. identity

2. Given that $x = \tan(t)$, use Pythagoras' Theorem to determine a, c.

3. Combine your answers above to determine

$$\int \sqrt{x^2 + 1} dx$$

MATHEMATICAL WORKOUT Using the substitution $x = 2 \sec(t)$ determine

$$\int \frac{\sqrt{x^2 - 4}}{x} dx$$