Middlebury
College

Calculus II: Spring 2018

Contact: gmelvin@middlebury.edu

April 16 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 7.3.
- Calculus, Spivak, 3rd Ed.: Section 19

KEYWORDS: inverse trigonometric substitution

Techniques of Integration III. Inverse Trigonometric Substitutions.

Today we investigate the method of inverse trigonometric substitution. We will see lots of examples.

Inverse trigonometric substitution

The method of inverse trigonometric substitution proceeds as follows: we are looking to determine

$$
\int h(x) d x
$$

where $h(x)$ contains one of the following expressions

$$
\sqrt{a^{2}-x^{2}}, \quad \sqrt{a^{2}+x^{2}}, \quad \sqrt{x^{2}-a^{2}} \quad \text { where } a \text { is some constant. }
$$

Strategy:

1. Make the following substitution, depending on which of the above expressions appears in $h(x)$:

$$
\begin{array}{lll}
x=a \sin (t) & \leftrightarrow & \sqrt{a^{2}-x^{2}} \\
x=a \tan (t) & \leftrightarrow & \sqrt{a^{2}+x^{2}} \\
x=a \sec (t) & \leftrightarrow & \sqrt{x^{2}-a^{2}} \\
\hline
\end{array}
$$

2. Suppose we've made the substitution $x=T(t)$ above. Write

$$
h(T(t)) \frac{d x}{d t}=f(t)
$$

3. Determine

$$
\int f(t) d t
$$

4. Substitute $t=T^{-1}(t)$ into the resulting expression.

Useful Trig. Identities

- $\quad \sin ^{2}(t)+\cos ^{2}(t)=1$
- $\tan ^{2}(t)+1=\sec ^{2}(t)$
- $\quad \cos ^{2}(t)=\frac{1}{2}(1+\cos (2 t))$
- $\sin ^{2}(t)=\frac{1}{2}(1-\cos (2 t))$
- $\cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t)$
- $\sin (2 t)=2 \sin (t) \cos (t)$

Check your understanding

Let's determine

$$
\int \sqrt{36-x^{2}} d x
$$

by the method of inverse trigonometric substitution.

1. Let $x=6 \sin (t)$. Show that

$$
\sqrt{36-x^{2}} \frac{d x}{d t}=6 \cos ^{2}(t)
$$

2. Determine

$$
\int \cos ^{2}(t) d t
$$

3. Given that $x=6 \sin (t)$, complete the following triangle:

4. Combine your answers above to determine

$$
\int \sqrt{36-x^{2}} d x
$$

Hint: you have all the pieces of the puzzle, now see how the Strategy tells you to fit them together.

Check your understanding

Let's determine

$$
\int \sqrt{x^{2}+1} d x
$$

by the method of inverse trigonometric substitution.

1. Let $x=\tan (t)$. Show that

$$
\sqrt{x^{2}+1} \frac{d x}{d t}=\cos (t)
$$

Hint: $\frac{d}{d t} \tan (t)=\sec ^{2}(t)=\frac{1}{\cos ^{2}(t)}$ and use an appropriate trig. identity
2. Given that $x=\tan (t)$, use Pythagoras' Theorem to determine a, c.

3. Combine your answers above to determine

$$
\int \sqrt{x^{2}+1} d x
$$

Mathematical Workout
Using the substitution $x=2 \sec (t)$ determine

$$
\int \frac{\sqrt{x^{2}-4}}{x} d x
$$

