
Calculus II: Spring 2018
Extra Credit Problems

Contact: gmelvin@middlebury.edu

Some thoughts and advice:

• You should expect to spend at least several hours on a single problem.

• When approaching a problem think about the following: do you understand the words used to state
the problem? what is the problem asking you to do? can you restate the problem in your own words?
have you seen a similar problem? can you spot any patterns? have you thought about all possible
cases?

• To receive full credit you must present your solution to me on the blackboard in my office.

• You are allowed to work with each other on these problems. However, you must present your solution
to me on your own.

• You are not allowed to use any additional resources. If you are concerned then please ask.

• Problems are graded as follows:

- (*) = at most 1 point

- (**) = at most 2 points

- (***) = at most 3 points

1. (**) In this problem you will determine a continued fraction expansion of the real number
√

2.

(a) Let (an) be a sequence. Show that if limn→∞ a2n = L and limn→∞ a2n+1 = L then (an) is convergent
and limn→∞ an = L.

(b) Define the sequence (an) where

a1 = 1, an+1 = 1 + 1

1 + an
, n = 1,2,3, . . .

i. Write down the first eight terms of (an).
ii. Use part (a) to show that (an) is convergent and limn→∞ =

√
2. Deduce the continued

fraction expansion √
2 = 1 + 1

2 + 1
2+⋯

2. (**) In this problem you will show the existence of Euler’s constant γ. It is not know whether γ is
rational or irrational.

(a) Show that
1

n + 1
< ln(n + 1) − ln(n) < 1

n
,

where ln(x) = ∫
x

1
1
tdt is the natural logarithim function.

(b) Define

an = 1 + 1

2
+ 1

3
+⋯ + 1

n
− log(n), n = 1,2,3, . . .

Show that the sequence (an) is decreasing and that an ≥ 0, for each n. The limit γ = limn→∞ an
is known as Euler’s constant, after Leonhard Euler (1707-1783).



3. (**) Let x be a real number having decimal expansion

x = a.a1a2a3⋯arb1b2⋯bk

For example, we write
0.123456 = 0.123456456456456⋯

(a) Show that there exists integers p, q so that x = p
q . In particular, the contrapositive statement is:

if x is irrational then x does not have a repeating decimal pattern.

(b) (Additional (not required)) Show that if x = p
q is rational then it has a repeating decimal expan-

sion.

4. (**) Divide the plane into regions using straight lines. Prove that those regions can be coloured with
two colours so that no two regions that share a boundary have the same colour.

5. (**) In this problem you will show that Euler’s number

e = exp(1) = 1 +
∞

∑
n=1

1

n!
= 1 + 1 + 1

2!
+ 1

3!
+ . . . = 2.71828 . . .

is irrational using a proof by contradiction argument. We will assume that e is, in fact, a rational
number (i.e. a ratio of two integers) and derive a statement of absurdity. Hence, it must be the case
that e is irrational (any real number must be either rational or irrational).

Assume that e is rational. This means that there are two natural numbers p and q so that

e = p
q

We will assume that p, q satisfy the condition that p is not a multiple of q.

(a) Explain why q ≠ 1. Deduce that q > 1. (Hint: what would have to be true of e if q = 1?)

(b) Let sm be the mth partial sum of the series 1 + ∑∞

n=1
1
n! . Show that q!sq is an integer. Deduce

that
q!(e − sq)

is an integer.

We will now show, by a different argument, that q!(e−sq) is not an integer. This contradiction of
what we’ve just shown implies that our assumption that e is rational must be a false assumption.
Hence, e can’t possibly be rational, so it must be an irrational number.

Observe that, in the argument that follows, we never make use of our assumption that e = p/q.
(c) Using the definition of e as the limit of a series, show that

e − sq =
∞

∑
n=q+1

1

n!
= 1

(q + 1)! +
1

(q + 2)! + . . .

(d) Deduce that

q! (e − sq) =
1

(q + 1) +
1

(q + 1)(q + 2) +
1

(q + 1)(q + 2)(q + 3) + . . .



(e) Let

an =
1

(q + 1)(q + 2)⋯(q + n) .

Show that

an ≤
1

(q + 1)n , n = 1,2,3, . . .

Deduce that

q!(e − sq) ≤
∞

∑
n=1

1

(q + 1)n = 1

q
< 1.

(f) Recall from Problem A1 that e > sq. Show that

0 < q!(e − sq) < 1.

Conclude that q!(e − sq) can’t possibly be an integer.

6. (***) In this problem you will prove the Riemann Rearrangement Theorem:

Let ∑an be a conditionally convergent series, r a real number. Then, there is a rearrangement (bn)
of the sequence (an) so that the series ∑ bn converges to r.

Given a series ∑an we define the series ∑pn whose terms (pn) are all the positive terms of the
sequence (an), and a series ∑ qn whose terms (qn) are all the negative terms of the sequence (an).
Specifically,

pn =
an + ∣an∣

2
, qn =

an − ∣an∣
2

.

Observe that, if an > 0 then pn = an and qn = 0, and if an < 0 then qn = an and pn = 0.

(a) Suppose that ∑an is absolutely convergent. Show that both of the series ∑pn and ∑ qn are
convergent.

(b) Suppose that ∑an is conditionally convergent. Show that one of the series ∑pn or ∑ qn must
be divergent. Deduce that the corresponding sequence of partial sums is unbounded.

(c) Suppose that ∑an is conditionally convergent. Show that both ∑pn and ∑ qn must have un-
bounded sequences of partial sums.

(d) Let r be a real number.

i. Show that there exists N such that ∑N
n=1 pn > r. Define N1 to be the least natural number

such that

S1
def=

N1

∑
n=1

pn > r.

ii. Show that there exists M such that ∑N1
n=1 pn +∑M

n=1 qn < r. Define M1 to be the least natural
number such that

T1
def=

N1

∑
n=1

pn +
M1

∑
n=1

qn < r.

iii. Similarly, let N2 > N1 be the least natural number such that

S2
def=

N2

∑
n=1

pn +
M1

∑
n=1

qn > r.

Explain why N2 exists.



iv. Similarly, let M2 >M1 be the least natural number such that

T2
def=

N2

∑
n=1

pn +
M2

∑
n=1

qn < r.

Explain why M2 exists.

v. Continuing in this way, show that you can obtain an increasing sequence of integers

N1 < N2 < N3 < ⋯ M1 <M2 <M3 < ⋯

and sums

Sk
def=

Nk

∑
n=1

pn +
Mk−1

∑
n=1

qn, and Tk
def=

Nk

∑
n=1

pn +
Mk

∑
n=1

qn

satisfying
0 < Sk − r < pMk

, and 0 < r − Tk < −qMk
.

vi. Explain why the rearrangement

(bn) = (p1, . . . , pN1 , q1, . . . , qM1 , pN1+1, . . . , pN2 , qM1+1, . . . , qM2 , . . .),

satisfies ∑ bn = r. Deduce Riemann’s Rearrangement Theorem.

7. (**) 2n dots are placed around the outside of the circle. n of them are colored red and the remaining
n are colored blue. Going around the circle clockwise, you keep a count of how many red and blue
dots you have passed. If at all times the number of red dots you have passed is at least the number
of blue dots, you consider it a successful trip around the circle. Prove that no matter how the dots
are colored red and blue, it is possible to have a successful trip around the circle if you start at the
correct point.

8. For n ≥ k ≥ 0, define the binomial coefficient to be

(n
k
) = n!

k!(n − k)!

We define (nk) = 0 if n < k.

(a) (*) Show Pascal’s identity

( n

k − 1
) + (n

k
) = (n + 1

k
)

(b) (*) Using induction and Pascal’s identity, show

n

∑
k=0

(n
k
) = 2n

(c) (**) Fix a natural number c. Using induction and Pascal’s identity, show

n

∑
k=0

(k
c
) = (n + 1

c + 1
)

9. (**) Let An = {1, . . . , n} be the collection of natural number 1, . . . , n. For example, A3 = {1,2,3}.
For n = 1,2,3, . . ., define

cn = the number of subsets of An having an even number of elements

For example, A3 contains the subsets {1,2}, {2,3}, {1,3}, (containing 2 elements) and the empty set
∅ (the subcollection containing 0 elements). Hence, cn = 4.

Using induction show that cn = 2n−1, for every natural number n.


