Calculus II: Fall 2017<br>Contact: gmelvin@middlebury.edu

## September 28 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.5-6.
- Calculus, Spivak, 3rd Ed.: Section 23.
- AP Calculus BC, Khan Academy: Ratio \& alternating series tests.


## Series convergence tests IV

1 Absolute \& conditional convergence Observe an interesting situation encountered previously: the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent while the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Definition 1.1. Let $\sum a_{n}$ be a series. If the series $\sum\left|a_{n}\right|$ is convergent then we say that the original series $\sum a_{n}$ is absolutely convergent.

If a series $\sum a_{n}$ is convergent but not absolutely convergent then we say that $\sum a_{n}$ is conditionally convergent.

## Check your understanding

Which of the following series are absolutely convergent, conditionally convergent, neither.

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}, \quad \text { (b) } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}, \quad \text { (c) } \quad \sum_{n=1}^{\infty} \frac{1}{5 n+1}
$$

(a)
(b)
(c)

Absolute convergence has some useful implications for our expanding bag of Convergence Tests.

## Absolute convergence implies convergence

If a series $\sum a_{n}$ is absolutely convergent then it is convergent.
Proof: For any real number $x$, the following is true

$$
0 \leq x+|x| \leq 2|x| .
$$

(Since $|x|$ is either $x$ or $-x$ ). Therefore, if $\sum a_{n}$ is absolutely convergent then $\sum\left|a_{n}\right|$ is convergent and the same is true of the series $\sum 2\left|a_{n}\right|$. Hence, applying the DCT we see that $\sum\left(a_{n}+\left|a_{n}\right|\right)$ is convergent. Now,

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|
$$

is a difference of two convergent series, and therefore convergent.

Example 1.2. Consider the series $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$. Then,

$$
\left|\frac{\sin (n)}{n^{2}}\right| \leq \frac{1}{n^{2}}
$$

Hence, by the DCT the series $\sum\left|\frac{\sin (n)}{n^{2}}\right|$ is convergent. Thus, the series $\sum \frac{\sin (n)}{n^{2}}$ is absolutely convergent, hence convergent.
Warning! Conditionally convergent series provide demonstrations of some of the weird things that can happen with series if we consider them as *fiineit muss* (the thing that shall not be named). For example, we know that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

is conditionally convergent with limit $L$. Now, suppose that we consider this series as an $*$ fetiiin smus*, and write

$$
\begin{equation*}
L=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8} \cdots \tag{A}
\end{equation*}
$$

Then,

$$
\frac{L}{2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\ldots
$$

whe we can rewrite as

$$
\begin{equation*}
\frac{L}{2}=0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8} \cdots \tag{B}
\end{equation*}
$$

Now, we add $(A)+(B)$

$$
\begin{align*}
& L=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\ldots  \tag{A}\\
& \frac{L}{2}=0+\frac{1}{2}+0-\frac{1}{4}+0+\frac{1}{6}+0-\frac{1}{8}+\ldots \tag{B}
\end{align*}
$$

to get

$$
\frac{3 L}{2}=1+0+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+0+\frac{1}{7}-\frac{1}{4}+\ldots
$$

It's not too difficult to show that this last infinite series contains the same terms as (A), but rearranged so that one negative term occurs after two positive terms. Hence, $L=\frac{3 L}{2} \Longrightarrow L=0$, which contradicts the fact that $\frac{1}{2}=s_{2} \leq L \leq s_{1}=1 \ldots$ !

The problem here is the process of rearrangement: for finite sums we are free to rearrange terms however we please (in fancy algebraic language, addition is commutative). However, as we've just demonstrated, we must be careful when attempting to rearrange the terms of a (infinite) series.
Remark 1.3. Bernhard Riemann (1820-1866) proved the following remarkable Theorem (see Problem Set 3):

Let $\sum a_{n}$ be a conditionally convergent series, $R$ some arbitrary real number. Then, it's possible to rearrange the terms of the sequence $\left(a_{n}\right)$ to form a new sequence $\left(b_{n}\right)$ (so that $\left(b_{n}\right)$ has the same terms as $\left(a_{n}\right)$ but listed in a different order) such that $\sum b_{n}=R$. In particular, it's possible to rearrange the terms of a conditionally convergent series so that the resulting series converges to a different limit!

The situation for absolutely convergent series is much more straightforward:
Let $\sum a_{n}$ be an absolutely convergent series. If $\left(b_{n}\right)$ is a rearrangement of the terms of the sequence $\left(a_{n}\right)$ (so that $\left(b_{n}\right)$ has the terms as $\left(a_{n}\right)$ but listed in a different order) then $\sum b_{n}=\sum a_{n}$.

2 Ratio Test In the next two sections we will discuss convergence tests that can be applied to arbitrary series.

Consider the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{2^{n}}
$$

This is an alternating series. In order to determine its convergence we may want to apply the AST: to do so, we must show that the sequence $\left(b_{n}\right)$, where $b_{n}=\frac{n^{2}}{2^{n}}$, is decreasing and $\lim b_{n}=0$. It is possible to do this but it requires some imagination and trickery. Let's make life easier.
Check your understanding

1. Explain why it is sufficient to show that the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ is convergent to determine convergence of $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{2^{n}}$.
2. Let $b_{n}=\frac{n^{2}}{2^{n}}$. Show that

$$
\frac{b_{n+1}}{b_{n}}=\frac{1}{2}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)
$$

3. Use the expression for $\frac{b_{n+1}}{b_{n}}$ to verify that $\frac{b_{4}}{b_{3}}<\frac{8}{9}$.
4. Use the expression for $\frac{b_{n+1}}{b_{n}}$ to explain why $\frac{b_{n+1}}{b_{n}} \leq \frac{b_{4}}{b_{3}}<\frac{8}{9}$ whenever $n \geq 3$.
5. Observe that we can write, for $n=1,2,3, \ldots$,

$$
b_{n}=b_{1} \cdot \frac{b_{2}}{b_{1}} \cdot \frac{b_{3}}{b_{2}} \cdot \frac{b_{4}}{b_{3}} \cdots \frac{b_{n-1}}{b_{n-2}} \cdot \frac{b_{n}}{b_{n-1}}
$$

Also, we have just shown that $\frac{b_{n+1}}{b_{n}}<\frac{8}{9}$ whenever $n \geq 3$.
Spot the pattern! Use this identity to complete the following inequalities:

$$
b_{5}<b_{3} \cdot\left(\frac{8}{9}\right)^{2}, \quad b_{6}<b_{3} . \quad, \quad<b_{3} \cdot\left(\frac{8}{9}\right)^{4}, \quad=<b_{3} \cdot(-)^{5}
$$

Spot the general pattern! Complete the following statement: for each $k=1,2,3, \ldots$

$$
\begin{equation*}
b_{3+k}< \tag{*}
\end{equation*}
$$

6. Complete the following statement:

Since the geometric series

$$
\sum_{k=1}^{\infty}\left(\frac{8}{9}\right)^{3+k}
$$

is $\qquad$ , and (*) holds true, we can apply the $\qquad$
to deduce that the series

$$
\sum_{n=3}^{\infty} \frac{n^{2}}{2^{n}}
$$

is $\qquad$ . Hence, the series

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=\frac{1^{2}}{2^{1}}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\sum_{n=3}^{\infty} \frac{n^{2}}{2^{n}}
$$

is $\qquad$ .

That was a long journey...! Let's summarise the important points: let $a_{n}=(-1)^{n} \frac{n^{2}}{2^{n}}$. Summary

- for $n$ sufficiently large (i.e. $n \geq 3$ ), we found $r<1$ (i.e. $r=\frac{8}{9}$ ) such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<r
$$

- for $n$ sufficiently large (ie. $n \geq 3$ ), we found $K>0$ (i.e. $K=\frac{b_{3}}{r^{3}}$ ) such that

$$
\left|a_{n}\right| \leq K r^{n}
$$

- we deduced the behaviour of $\sum\left|a_{n}\right|$ by comparing it to the geometric series $\sum K r^{n}$

Our observations above provide motivation and justification for the following:

## Ratio Test

Let $\sum a_{n}$ be a series, where $a_{n} \neq 0$.
(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum a_{n}$ is (absolutely) convergent.
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$, or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=+\infty$, then the series $\sum a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L=1$, then the test is inconclusive: we have gained no additional information on the divergence/convergence of $\sum a_{n}$.

Example 2.1. 1. Consider the series $\sum_{n=1}^{\infty} \frac{n^{10}}{3^{n}}$. Here $a_{n}=\frac{n^{10}}{3^{n}}$, and

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{10} 3^{n}}{3^{n+1} n^{10}} \frac{1}{3} \frac{(n+1)^{10}}{n^{10}}=\frac{1}{3}\left(1+\frac{1}{n}\right)^{10}
$$

As $n \rightarrow \infty$ this last expression tends towards $\frac{1}{3}(1+0)^{10}=\frac{1}{3}<1$. Hence, by the ratio test the series converges.
2. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n!}$. Here $a_{n}=\frac{1}{n!}$, and

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n!}{(n+1)!}=\frac{1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n}{1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n \cdot(n+1)}=\frac{1}{n+1} \rightarrow 0<1 \quad \text { as } n \rightarrow \infty .
$$

Hence, by the ratio test the series converges.
3. Consider the series $\sum_{n=1}^{\infty} \frac{n!}{n^{2}(-3)^{n}}$. Here $a_{n}=\frac{n!}{n^{2}(-3)^{n}}$, and

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!3^{n} n^{2}}{(n+1)^{2} 3^{n+1} n!}=\frac{1}{3} \cdot \frac{n^{2}}{(n+1)^{2}} \cdot(n+1)=\frac{3 n^{2}}{n+1} \rightarrow+\infty \quad \text { as } n \rightarrow \infty .
$$

Hence, by the ratio test the series diverges.
4. Consider the series $\sum_{n=1}^{\infty} \frac{n^{3}}{\sqrt{n}+2}$. Here $a_{n}=\frac{n^{3}}{\sqrt{n}+2}$, and

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{3}(\sqrt{n}+2)}{(\sqrt{n+1}+2) n^{3}}=\frac{n^{7 / 2}\left(1+\frac{1}{n}\right)^{3}\left(1+\frac{2}{\sqrt{n}}\right)}{n^{7 / 2}\left(\sqrt{1+\frac{1}{n}}+\frac{2}{n}\right)} \\
\quad=\frac{\left(1+\frac{1}{n}\right)^{3}\left(1+\frac{2}{\sqrt{n}}\right)}{\sqrt{1+\frac{1}{n}}+\frac{2}{n}} \rightarrow \frac{(1+0)^{3}(1+0)}{\sqrt{1+0}+0}=1
\end{array} .=\frac{1}{\sqrt{n}}\right.
\end{aligned}
$$

The root test is inconclusive. However, note that we could apply the Limit Comparison Test (for example) and compare with the divergent series $\sum n^{7 / 2}$ (it's a $p$-series, with $p=-7 / 2$ ) to deduce that the series $\sum a_{n}$ is divergent.

3 Root Test A companion to the Ratio Test is the following:
Root Test

Let $\sum a_{n}$ be a series, where $a_{n} \neq 0$.
(i) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then the series $\sum a_{n}$ is (absolutely) convergent.
(ii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L=+\infty$, then the series $\sum a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L=1$, then the test is inconclusive: we have gained no additional information on the divergence/convergence of $\sum a_{n}$.

To effectively apply the Root Test we need the following rules:

## Root Rules

1. $\lim _{n \rightarrow \infty} \sqrt[n]{C}=1$, for any constant $C>0$.
2. $\lim _{n \rightarrow \infty} \sqrt[n]{n^{p}}=1$, for any $p>0$.
3. $\quad \lim _{n \rightarrow \infty} \sqrt[n]{f(n)}=1$, for any nonzero polynomial $f(n)$.
4. $\lim _{n \rightarrow \infty} \sqrt[n]{n!}=+\infty$.

Remark 3.1. 1. The idea behind the root test is as follows: if $\lim _{n \rightarrow \infty}=L$ then, as $n \rightarrow \infty$, the terms of the sequence $\left(\sqrt[n]{\left|a_{n}\right|}\right)$ are 'sufficicently close to' $L$. This means that $\left|a_{n}\right|$ can be compared (in a suitable sense) to $L^{n}$. Then, the behaviour of $\sum a_{n}$ is similar to the behaviour of the geometric series $\sum L^{n}$.

Example 3.2. 1. Consider the geometric series $\sum_{n=10}^{\infty}\left(\frac{3^{n}}{5^{n}}\right)$. Then, $a_{n}=\frac{3^{n}}{5^{n}}$ and

$$
\sqrt[n]{\left\lvert\, \frac{3^{n}}{5^{n}}\right.} \left\lvert\,=\left(\left(\frac{3}{5}\right)^{n}\right)^{\frac{1}{n}}=\frac{3}{5} \rightarrow \frac{3}{5}<1 \quad\right. \text { as } n \rightarrow \infty .
$$

Hence, by the root test, the series is convergent.
Of course, we could also have recognised that the given series is a geometric series with $r=\frac{3}{5}$.
2. Consider the geometric series $\sum_{n=1}^{\infty} \frac{(-2)^{n} n^{3}}{3^{n}}$. Then, $a_{n}=\frac{(-2)^{n} n^{3}}{3^{n}}$ and

$$
\sqrt[n]{\left|a_{n}\right|}=\sqrt[n]{\frac{2^{n} n^{3}}{3^{n}}}=\left(\frac{2^{n} n^{3}}{3^{n}}\right)^{\frac{1}{n}}=\frac{2}{3} \sqrt[n]{n^{3}} \rightarrow \frac{2}{3} \cdot 1=\frac{2}{3}<1 \quad \text { as } n \rightarrow \infty \text { by the Root Rules. }
$$

Hence, by the root test the series is convergent.

