
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 25 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.4.
- Calculus, Spivak, 3rd Ed.: Section 23.
- AP Calculus BC, Khan Academy: Comparison tests, alternating series tests.

Series convergence tests II

1 Comparison tests In this paragraph we will be concerned with series ∑an associated to
sequences (an) consisting of positive terms i.e. for each n = 1,2,3, . . ., we require an > 0.

Check your understanding

Consider the series ∑
∞
n=1

1
5n+3 . Let (sm) be the sequence of partial terms associated to this

series. We are going to investigate the behaviour of this series by comparing it with the known
behaviour of the (convergent) geometric series ∑

∞
n=1

1
5n .

1. Write down the first three partial sums s1, s2, s3. You do not need to simplify your expres-
sions.

2. For each m = 1,2,3, . . ., explain carefully why sm+1 ≥ sm. Deduce that (sm) is an increasing
sequence.

3. Recall the geometric series ∑
∞
n=1

1
5n . Let (tm) be the associated sequence of partial sums. We

have seen that (tm) is convergent with limit 1
4 . Complete the following statement:

For each n = 1,2,3, . . ., we have 5n < 5n + 3 so that 1
5n+3 < .

Hence, for each m = 1,2,3, . . ., < sm < tm <

4. Using what you have discovered in the previous problems, explain carefully why (sm) is
convergent. Deduce that the series ∑

∞
n=1

1
5n+3 is convergent. Can you determine its limit?
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Direct Comparison Test (DCT)

Let ∑an and ∑ bn be series having positive terms.

1) Suppose that, for each n, an ≤ bn, and ∑ bn is convergent. Then, ∑an is
convergent.

2) Suppose that, for each n, an ≥ bn, and ∑ bn is divergent. Then, ∑an is
divergent.

The Direct Comparison Test has the following immediate consequences: first, in Problem Set 1,
Problem B8, you show that the series ∑

∞
n=1

1
n2 is convergent; second, we’ve seen that the Harmonic

Series ∑ 1
n is divergent.

p-series Test

Consider the series ∑
∞
n=1

1
np , where p is a real number. Then,

1. ∑
∞
n=1

1
np is convergent if p ≥ 2.

2. ∑
∞
n=1

1
np is divergent if p ≤ 1.

Proof:

1. If p ≥ 2 then, for each n = 1,2,3, . . .,

np ≥ n2 Ô⇒
1

np
≤

1

n2

Hence, since∑
∞
n=1

1
n2 is convergent, we can apply DCT to show that∑

∞
n=1

1
np is also convergent.

2. If p ≤ 1 then, for each n = 1,2,3, . . .,

np ≤ n Ô⇒
1

n
≤

1

np

Hence, since ∑
∞
n=1

1
n is divergent, we can apply DCT to show that ∑

∞
n=1

1
np is also divergent.

Remark 1.1. We will soon see that the series ∑ 1
np is convergent if p > 1 (i.e. we’ll show conver-

gence when 1 < p ≤ 2).

The p-series ∑
∞
n=1

1
np is

• convergent if p > 1.

• divergent if p ≤ 1.
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Example 1.2.

Consider the series ∑
∞
n=1

2
4n2+3n+1 . As n gets large, the terms of this series will approximately ‘look

like’ 2
4n2 =

1
2n2 . This observation motivates us to try to compare ∑

∞
n=1

2
4n2+3n+1 with the convergent

series 1
2 ∑

∞
n=1

1
n2 .

We note that, for n = 1,2,3, . . .,

2n2 < 2n2 +
3

2
n +

1

2
Ô⇒

2

4n2 + 3n2 + 1
<

1

2n2

Since the series ∑
∞
n=1

1
2n2 =

1
2 ∑

∞
n=1

1
n2 is convergent, we apply the DCT to conclude that the series

∑
∞
n=1

2
4n2+3n+1 is also convergent.

Sometimes we may have to be a little bit clever when trying to apply DCT.

Get creative!
Consider the series ∑

∞
n=1

1√
n+2

. As n gets large, the terms of this series will approximately ‘look

like’ 1√
n
. This observation motivates us to try to compare ∑

∞
n=1

1√
n+2

with the divergent series

∑
∞
n=1

1√
n
.

1. Explain why we can’t use DCT to compare ∑
∞
n=1

1√
n+2

with the divergent series ∑
∞
n=1

1√
n
.

2. For which natural numbers n is the inequality n2 > n + 2 true?

3. Determine 0 < p ≤ 1 and k so that the following statement is true:

if n ≥ k then 1
np ≤

1√
n+2

.

4. Apply the DCT to deduce that ∑
∞
n=k

1√
n+2

is divergent. Explain why this implies that

∑
∞
n=1

1√
n+2

is divergent.

Trying to compare a given series with an appropriate candidate to apply the DCT is bit of an art.
We’d like for life to be easier. Thankfully, it is.
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Limit Comparison Test (LCT)

Suppose that ∑an and ∑ bn are series with positive terms. If the sequence
(an
bn
) is convergent and

lim
n→∞

an
bn

= c > 0,

then either both series converge or both series diverge.

Remark 1.3. You will be given the opportunity to try and prove the Limit Comparison Test on
Problem Set 2.

Example 1.4. 1. We will see how the LCT makes determining convergence/divergence of the
series ∑

∞
n=1

1√
n+2

much easier.

Indeed, since
√
n + 2
√
n

=

√
n
√
n
.

√

1 +
2

n
=

√

1 +
2

n
→ 1 as n→∞,

and the series ∑
∞
n=1

1√
n

diverges, we apply the LCT to conclude that ∑
∞
n=1

1√
n+2

also diverges.

2. Consider the series ∑
∞
n=1

n√
n−2

. As n gets large the terms of this series ‘look like’ n√
n
=
√
n.

We will use the LCT to compare ∑ n√
n−2

with the divergent series ∑
√
n.

Note that
n

√
n − 1

⋅
1
√
n
=
n

n
⋅

1

1 − 1√
n

=
1

1 − 1√
n

→ 1 as n→∞.

Since the series ∑
√
n is divergent, we can apply the LCT to determine that the series ∑ n√

n−1

is divergent also.

2 Alternating series

Definition 2.1. A series of the form ∑(−1)nbn, where bn ≥ 0 for all n, is called an alternating
series.

Remark 2.2. An alternating series is a series whose successive terms have alternating sign.

Example 2.3. The following series are examples of alternating series:

∞

∑
n=0

(−1)n

n
,

∞

∑
n=1

(−1)n−1,
∞

∑
n=3

(−1)n+1

n2 + 4n + 4

The following series are not alternating:

∞

∑
n=1

2 − (−1)n

n
,

∞

∑
n=4

sin(n)

n2
,

∞

∑
n=1

((−1)n −
(−1)n

2n
) .
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