Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 22 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.2.
- Calculus, Spivak, 3rd Ed.: Section 23.
- AP Calculus BC, Khan Academy: Infinite sequences, basic convergence tests.

Series convergence tests I

1 Telescoping series Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} .
$$

Check your understanding

1. Determine the first five partial sums $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ as a fraction in simplest terms.
2. What do you expect to be the expression for s_{m}, the $m^{t h}$ partial sum?
3. Based on your guess above, is the sequence of partial sums $\left(s_{m}\right)$ convergent or divergent? If convergent, what does this tell us about $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} ?$; if divergent, give a careful justification.

Remark 1.1. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is an example of a telescoping series: the partial sums s_{m} can be shown to be a difference of two similar sums with successive cancellation.

2 Test for divergence In this paragraph we will discuss a simple test for divergence of a series $\sum_{n=1}^{\infty} a_{n}$. First we make the following observation: let $\left(s_{m}\right)$ be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_{n}$. Then, we can recover the sequence (a_{n}) from the sequence of partial sums by noting that

$$
\begin{aligned}
a_{1} & =s_{1}, \\
a_{2} & =\left(a_{1}+a_{2}\right)-a_{1}=s_{2}-s_{1}, \\
a_{3} & =\left(a_{1}+a_{2}+a_{3}\right)-\left(a_{1}+a_{2}\right)=s_{3}-s_{2}, \\
a_{4} & =\left(a_{1}+a_{2}+a_{3}+a_{4}\right)-\left(a_{1}+a_{2}+a_{3}\right)=s_{4}-s_{3}, \\
& \vdots
\end{aligned}
$$

Hence, for each $n=1,2,3, \ldots$,

$$
a_{n+1}=\left(a_{1}+a_{2}+\ldots+a_{n+1}\right)-\left(a_{1}+\ldots+a_{n}\right)=s_{n+1}-s_{n} .
$$

Mathematical workout - Flex those muscles!

1. Let $\left(b_{n}\right)$ be a convergent sequence, $\lim _{n \rightarrow \infty} b_{n}=L$. Define a new sequence

$$
\left(c_{n}\right)=\left(b_{2}, b_{3}, b_{4}, \ldots\right),
$$

so that $c_{1}=b_{2}, c_{2}=b_{3}$ etc. Complete the statement:

$$
\left(c_{n}\right) \text { is } \quad \text { and } \lim _{n \rightarrow \infty} c_{n}=
$$

2. Let $\left(s_{m}\right)$ be the sequence of partial sums associated to the series $\sum_{n=1}^{\infty} a_{n}$. Assume that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(a) Using the previous exercise, explain carefully why $\lim _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right)=0$.
(b) Complete the following statement:

If the series $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=$ \qquad .

Considering the contrapositive statement ${ }^{\square}$ we obtain the following

Test for divergence

Let $\sum_{n=1}^{\infty} a_{n}$ be a series. If $\lim a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
Remark 2.1. We will see in the next paragraph a series $\sum_{n=1}^{\infty} a_{n}$ that is divergent and for which $\lim _{n \rightarrow \infty} a_{n}=0$. This shows that the converse of the above statement does not hold.
Example 2.2. Consider the series

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}
$$

This is the series associated to the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{2 n^{2}+1}{5 n^{2}+6 n+1}$. Since

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}=\frac{2}{5} \neq 0
$$

the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{5 n^{2}+6 n+1}$ does not converge, by the test for divergence.

[^0]
3 The harmonic series

Definition 3.1. The series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is called the harmonic series.
We investigate the behaviour of the harmonic series. Denote the partial sums of the harmonic series by $s_{m}, m=1,2,3, \ldots$.

Spot the pattern!

1. (a) Verify that

$$
\frac{1}{3}+\frac{1}{4}>\frac{2}{4}=\frac{1}{2}, \quad \text { and } \quad \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{4}{8}=\frac{1}{2}
$$

(b) Spot the pattern!

$$
\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}>-
$$

(c) Spot the general pattern! Complete the following statement: for each $k=1,2,3, \ldots$,

$$
\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\frac{1}{2^{k}+3}+\ldots+\frac{1}{2^{k+1}-1}+\frac{1}{2^{k+1}}>-\quad=
$$

(d) Using (a),(b), explain why

$$
\begin{gathered}
s_{2^{2}}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}>1+\frac{1}{2}+\frac{1}{2}=1+\frac{2}{2} \\
s_{2^{3}}=1+\frac{1}{2}+\ldots+\frac{1}{8}>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\
s_{2^{4}}=1+\frac{1}{2}+\ldots+\frac{1}{16}>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{4}{2}
\end{gathered}
$$

(e) Spot the general pattern! Complete the following statement: for each $k=1,2,3, \ldots$,

$$
s_{2^{k+1}}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{k+1}}>1+\square
$$

(f) Complete the following statement

The sequence of partial sums $\left(s_{m}\right)$ associated to the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is
\qquad —.

Hence, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is

Appendix: telescoping sums
Note that we can write

$$
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} .
$$

Hence, the $m^{\text {th }}$ partial sum of the series can be written as

$$
s_{m}=\sum_{n=1}^{m} \frac{1}{n(n+1)}=\sum_{n=1}^{m}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sum_{n=1}^{m} \frac{1}{n}-\sum_{n=1}^{m} \frac{1}{n+1}
$$

Expanding the sigma notation (this is always useful to fo!), we have

$$
\begin{aligned}
s_{m} & =\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}\right)-\left(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}+\frac{1}{m+1}\right) \\
& =1-\frac{1}{m+1} .
\end{aligned}
$$

Hence, the sequence of partial sums $\left(s_{m}\right)$ is increasing, bounded (above by 1 , below by 0), therefore convergent. As $\lim _{m \rightarrow \infty} \frac{1}{m+1}=0$, we use the Limit Laws to obtain $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{m \rightarrow \infty} s_{m}=1$.
Example 3.2. Consider the series

$$
\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}
$$

We can write, for $n=2,3,4, \ldots$,

$$
\frac{1}{(n-1)(n+1)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)
$$

Hence, the $m^{\text {th }}$ partial sum is

$$
\begin{aligned}
s_{m} & =\sum_{n=2}^{m} \frac{1}{(n-1)(n+1)} \\
& =\sum_{n=2}^{\infty} \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right) \\
& =\frac{1}{2}\left(\sum_{n=2}^{m} \frac{1}{n-1}-\sum_{n=2}^{m} \frac{1}{n+1}\right) \\
& =\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2 n-1}-\frac{1}{3}-\ldots--\frac{1}{m-1}-\frac{1}{m}-\frac{1}{m+1}\right) \\
& =\frac{1}{2}\left(\frac{3}{2}-\frac{1}{m}-\frac{1}{m+1}\right)
\end{aligned}
$$

Hence, as $\lim _{m \rightarrow \infty} \frac{1}{m}=\lim _{m \rightarrow \infty} \frac{1}{m+1}=0$, the sequence $\left(s_{m}\right)$ is convergent with limit $\frac{3}{4}$. Therefore, the series is convergent and $\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)}=\frac{3}{4}$.

[^0]: ${ }^{1}$ Given a statement of the form if P then Q, the contrapositive statement is the logically equivalent statement if 'not Q ' then 'not P '. For example, the statement 'if you are a Vermonter then you are American' is logically equivalent to 'if you are not an American then you are not a Vermonter'.

