
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 22 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.2.
- Calculus, Spivak, 3rd Ed.: Section 23.
- AP Calculus BC, Khan Academy: Infinite sequences, basic convergence tests.

Series convergence tests I

1 Telescoping series Consider the series

∞

∑

n=1

1

n(n + 1)
.

Check your understanding

1. Determine the first five partial sums s1, s2, s3, s4, s5 as a fraction in simplest terms.

2. What do you expect to be the expression for sm, the mth partial sum?

3. Based on your guess above, is the sequence of partial sums (sm) convergent or divergent? If
convergent, what does this tell us about ∑

∞
n=1

1
n(n+1)?; if divergent, give a careful justification.

Remark 1.1. The series ∑
∞
n=1

1
n(n+1) is an example of a telescoping series: the partial sums sm

can be shown to be a difference of two similar sums with successive cancellation.

2 Test for divergence In this paragraph we will discuss a simple test for divergence of a series

∑
∞
n=1 an. First we make the following observation: let (sm) be the sequence of partial sums

associated to the series ∑
∞
n=1 an. Then, we can recover the sequence (an) from the sequence of

partial sums by noting that
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a1 = s1,
a2 = (a1 + a2) − a1 = s2 − s1,
a3 = (a1 + a2 + a3) − (a1 + a2) = s3 − s2,
a4 = (a1 + a2 + a3 + a4) − (a1 + a2 + a3) = s4 − s3,
⋮

Hence, for each n = 1,2,3, . . .,

an+1 = (a1 + a2 + . . . + an+1) − (a1 + . . . + an) = sn+1 − sn.

Mathematical workout - flex those muscles!

1. Let (bn) be a convergent sequence, limn→∞ bn = L. Define a new sequence

(cn) = (b2, b3, b4, . . .),

so that c1 = b2, c2 = b3 etc. Complete the statement:

(cn) is and limn→∞ cn = .

2. Let (sm) be the sequence of partial sums associated to the series ∑
∞
n=1 an. Assume that

∑
∞
n=1 an is convergent.

(a) Using the previous exercise, explain carefully why limn→∞(sn+1 − sn) = 0.

(b) Complete the following statement:

If the series ∑
∞
n=1 an converges then limn→∞ an = .

Considering the contrapositive statement1 we obtain the following

Test for divergence

Let ∑
∞
n=1 an be a series. If liman ≠ 0 then ∑

∞
n=1 an is divergent.

Remark 2.1. We will see in the next paragraph a series ∑
∞
n=1 an that is divergent and for which

limn→∞ an = 0. This shows that the converse of the above statement does not hold.

Example 2.2. Consider the series
∞

∑

n=1

2n2
+ 1

5n2
+ 6n + 1

.

This is the series associated to the sequence (an), where an =
2n2+1

5n2+6n+1 . Since

lim
n→∞

an = lim
n→∞

2n2
+ 1

5n2
+ 6n + 1

=
2

5
≠ 0,

the series ∑
∞
n=1

2n2+1
5n2+6n+1 does not converge, by the test for divergence.

1Given a statement of the form if P then Q, the contrapositive statement is the logically equivalent statement
if ‘not Q’ then ‘not P ’. For example, the statement ‘if you are a Vermonter then you are American’ is logically
equivalent to ‘if you are not an American then you are not a Vermonter’.
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3 The harmonic series

Definition 3.1. The series
∞

∑

n=1

1

n

is called the harmonic series.

We investigate the behaviour of the harmonic series. Denote the partial sums of the harmonic
series by sm, m = 1,2,3, . . ..

Spot the pattern!

1. (a) Verify that
1

3
+

1

4
>

2

4
=

1

2
, and

1

5
+

1

6
+

1

7
+

1

8
>

4

8
=

1

2

(b) Spot the pattern!

1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16 > =

(c) Spot the general pattern! Complete the following statement: for each k = 1,2,3, . . .,

1
2k+1
+

1
2k+2
+

1
2k+3
+ . . . + 1

2k+1−1
+

1
2k+1

> =

(d) Using (a),(b), explain why

s22 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

2
= 1 +

2

2
,

s23 = 1 +
1

2
+ . . . +

1

8
> 1 +

1

2
+

1

2
+

1

2
= 1 +

3

2

s24 = 1 +
1

2
+ . . . +

1

16
> 1 +

1

2
+

1

2
+

1

2
+

1

2
= 1 +

4

2

(e) Spot the general pattern! Complete the following statement: for each k = 1,2,3, . . .,

s2k+1 = 1 +
1

2
+

1

3
+ . . . +

1

2k+1
> 1 +

(f) Complete the following statement

The sequence of partial sums (sm) associated to the harmonic series ∑
∞
n=1

1
n is

.

Hence, the harmonic series ∑
∞
n=1

1
n is .
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Appendix: telescoping sums
Note that we can write

1

n(n + 1)
=

1

n
−

1

n + 1
.

Hence, the mth partial sum of the series can be written as

sm =

m

∑

n=1

1

n(n + 1)
=

m

∑

n=1

(
1

n
−

1

n + 1
) =

m

∑

n=1

1

n
−

m

∑

n=1

1

n + 1

Expanding the sigma notation (this is always useful to fo!), we have

sm = (1 +
1

2
+

1

3
+ . . . +

1

m
) − (

1

2
+

1

3
+ . . . +

1

m
+

1

m + 1
)

= 1 −
1

m + 1
.

Hence, the sequence of partial sums (sm) is increasing, bounded (above by 1, below by 0), therefore
convergent. As limm→∞

1
m+1 = 0, we use the Limit Laws to obtain ∑

∞
n=1

1
n(n+1) = limm→∞ sm = 1.

Example 3.2. Consider the series
∞

∑

n=2

1

(n − 1)(n + 1)
.

We can write, for n = 2,3,4, . . .,

1

(n − 1)(n + 1)
=

1

2
(

1

n − 1
−

1

n + 1
)

Hence, the mth partial sum is

sm =

m

∑

n=2

1

(n − 1)(n + 1)

=

∞

∑

n=2

1

2
(

1

n − 1
−

1

n + 1
)

=
1

2
(

m

∑

n=2

1

n − 1
−

m

∑

n=2

1

n + 1
)

=
1

2
(

1

1
+

1

2
+

�
�
�1

3
+ . . . +

�
�
��1

m − 1
−
C
C
C

1

3
− . . . − −

Z
Z
ZZ

1

m − 1
−

1

m
−

1

m + 1
)

=
1

2
(

3

2
−

1

m
−

1

m + 1
)

Hence, as limm→∞
1
m = limm→∞

1
m+1 = 0, the sequence (sm) is convergent with limit 3

4 . Therefore,
the series is convergent and ∑

∞
n=2

1
(n−1)(n+1) =

3
4 .
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