
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 21 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1-2.
- Calculus, Spivak, 3rd Ed.: Section 22, 23.
- AP Calculus BC, Khan Academy: Infinite sequences, finite geometric series,

partial sums, infinite geometric series.

End of sequences. Beginning of series.

1 Monotonic+Bounded Theorem

Theorem 1.1. Let (an) be a monotonic, bounded sequence. Then, (an) is
convergent.

Remark 1.2. 1. The Monotonic+Bounded Theorem is a little strange: it tells us
that a monotonic, bounded sequence is convergent but does not say say how
to find limn→∞ an! Compare this with the Squeeze Theorem where we not only
show that a sequence is convergent but also obtain its limit.

2. In Problem Set 1 there is a generalisation of the Monotonic+Bounded Theorem:
say that a sequence (an) is eventually monotonic if there is some n0 such
that the sequence (an)n≥n0 is monotonic. For example, if an = n2 − 13n + 30
then the sequence (an) is eventually monotonic (it is eventually increasing: the
sequence (an)n≥7 is increasing. Plot its graph for n = 1, . . . ,10 to see).

Example 1.3. Suppose that 0 ≤ x < 1. Consider the sequence (an), where an = xn.
Then, for each n = 1,2,3, . . .

an+1 − an = xn+1 − xn = xn(x − 1) ≤ 0 Ô⇒ an+1 ≤ an, n = 1,2,3, . . . .

Hence, (an) is decreasing. Also, (an) is bounded: for each n = 1,2,3, . . ., we have
0 ≤ an ≤ 1. Therefore, by the Monotonic+Bounded Theorem the sequence (an) is
convergent. Let L = limn→∞ an.

Define a new sequence (bn) = (a2, a3, a4, . . .), so that the nth term of (bn) is the
(n + 1)st term of (an). Then, (bn) is also convergent with limit L (why?). Notice
that, for n = 1,2,3, . . .,

bn = an+1 = xn+1 = xan.

Hence, using the Limit Laws for sequences we have

L = lim
n→∞ bn = lim

n→∞(xan) = x ( lim
n→∞an) = xL Ô⇒ L(x − 1) = 0

The last equality implies that L = 0, since we have assumed that x < 1.
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Check your understanding

1. Let 0 ≤ x < 1. Consider the sequence (cn), where cn = −xn. Explain carefully
why limn→∞ cn = 0.

2. Let −1 < x < 1. Consider the sequence (dn), where dn = xn. Show that
limn→∞ dn = 0. (Hint: denote r = ∣x∣. Then, −rn ≤ dn ≤ rn, for n = 1,2,3, . . ..
Now, squeeeeeze.)

3. Let x be a real number such that ∣x∣ > 1 and define the sequence (en), where
en = xn. Complete the following statement:

‘The sequence (en) is . Hence, (en) is not ’

2 Introduction to series Every real number x has a decimal expansion and this
decimal expansion can have finite or infinite length. For example, we learn at some
point that

1

3
= 0.3333333 . . .

What does the right hand side of this equality mean? Why is the above equality
true?

One way to rewrite this is as follows:

1

3
= 3

10
+ 3

102
+ 3

103
+ 3

104
+ . . .

Again, you might, and should, ask: what does this mean? In particular, what does
it mean to ‘sum’ an infinite number of terms? This obviously(?) does not make any
sense if we consider the sum

1 + 2 + 3 + 4 + . . . = ???

First, we have to note the following basic observation: it is impossible to ‘sum’ an
infinite number of terms - there is (literally) not enough time to do so. However,
it is possible to ask whether the sequence of finite sums

s1 = 3
10 ,

s2 = 3
10 + 3

102 ,
s3 = 3

10 + 3
102 + 3

103 ,
⋮

sm = 3
10 + 3

102 + . . . + 3
10m

converges to a limit L. In sigma notation1 we have

sm =
m

∑
n=1

3

10n
.

We give the following essential definition:

1See handout for basic properties of sigma notation.
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Definition 2.1. Let (an) be a sequence.

1. Define the mth partial sum associated to (an) to be the (finite) sum

sm = a1 + a2 + . . . + am =
m

∑
n=1

an.

2. Define the sequence of partial sums associated to (an) to be the corre-
sponding sequence (sm), where sm is the mth partial sum associated to (an).

3. If (sm) is convergent then we write

∞
∑
n=1

an
def= lim

m→∞ sm.

We call the symbol ∑∞
n=1 an a series.

Important Remark

1. A series is the limit of a sequence of finite sums.

2. Given a sequence (an) we will (by abuse of notation) define the symbol

∑∞
n=1 an to be a series, even when we don’t know whether (sm), the

sequence of partial sums associated to (an), is convergent. We will say
that the series ∑∞

n=1 an is convergent if the sequence of partial sums
associated to (an) is convergent, and divergent otherwise.

3. Given a sequence (an) we will call the series ∑∞
n=1 an the series

associated to (an).

4. Let ∑∞
n=1 an be a series. We will also say that the partial sums

associated to (an) are the partial sums associated to ∑∞
n=1 an.

5. We have ∞
∑
n=1

an = lim
m→∞

m

∑
n=1

an.

For the next few lectures we will be interested in determining when series are
convergent and how we can use series to provide approximations to real numbers.

Check your understanding

1. Let (an) be a sequence such that, for each m = 1,2,3, . . ., the mth partial sum
sm satisfies

sm = a1 + a2 + . . . + am = 2m − 1

3m + 5
.

Does the series ∑∞
n=1 an converge? If so, what is its limit? If not, explain

carefully why not.
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2. Let (an) be a sequence such that the sequence of partial sums associated to
(an), (sm), satisfies

sm = 10 − 4

m2 + 1
.

Then, ∑∞
n=1 an = .

Since a convergent series is, by definition, the limit of a sequence, we can translate
the Limit Laws for Sequences into corresponding results for series.

Proposition 2.2 (Additive properties of series). Let ∑∞
n=1 an, ∑∞

n=1 bn
be convergent series, c a constant. Then,

1. ∑∞
n=1 (an ± bn) = ∑∞

n=1 an ±∑∞
n=1 bn,

2. ∑∞
n=1 can = c (∑∞

n=1 an)

3 Geometric series

Definition 3.1. Let r be a real number. Define the sequence (an), where an = rn.
The series ∑∞

n=1 an is called a geometric series.

Check your understanding

1. Let∑∞
n=1 rn be a geometric series. Write down the mth partial sum sm associated

to this series.

2. Show that
sm − rsm = r(1 − rm).

Deduce that, if r ≠ 1 then sm = r(1−rm)
1−r .

3. For which r is the sequence of partial sums (sm) convergent? (Hint: consider
the exercise at the beginning of this lecture.)

4. What happens when r = ±1?
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Create your own Theorem!

Geometric Series Theorem

Let < r < . Then, the geometric series ∑∞
n=1 rn is

and ∞
∑
n=1

rn = .

Remark 3.2. A series ∑∞
n=1 an is a geometric series if there is a real number r so

that, for each n = 1,2,3, . . .,
an+1
an

= r.

Example 3.3. 1. Consider the series

∞
∑
n=1

3

10n
= 3

10
+ 3

102
+ 3

103
+ . . .

Using the Additive Properties for Series (Proposition 2.2), we have

∞
∑
n=1

3

10n
= 3

∞
∑
n=1

1

10n
.

The series on the right hand side is a geometric series with r = 1
10 . Hence, since

∣r∣ < 1, we have
∞
∑
n=1

3

10n
= 3( 1

10
.

1

1 − 1
10

) = 1

3

2. The series ∑∞
n=1(−2)n32−n is convergent: indeed, this is the series associated to

the sequence (an), where

an = (−2)n32−n = 9(−2

3
)
n

.

Hence,
∞
∑
n=1

an =
∞
∑
n=1

9(−2

3
)
n

= 9
∞
∑
n=1
(−2

3
)
n

and we identify this latter series as a geometric series with r = −2
3 . As ∣r∣ < 1,

the series is convergent with limit

9
∞
∑
n=1
(−2

3
)
n

= 9(−2

3
) 1

1 + 2
3

= −18

5
.

Alternatively, we can identify the given series as a geometric series once we
observe that, for each n = 1,2,3, . . .,

an+1
an

= (−2)n+132−n−1

(−2)n32−n = −2

3
.
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An e-xcellent example
We are going to model compound interest and define the fundamental mathemat-

ical constant e as the limit of a sequence. We will need the results of our investigation
into geometric series along the way.

Let

P = amount in savings account at time t = 0,
r = annual interest rate, 0 ≤ r ≤ 1,
f(t) = savings account balance at time t (in years).

Thus, if we compound interest once at the end of each year then

f(0) = P
f(1) = P + rP = P (1 + r)
f(2) = (P + rP ) + r(P + rP ) = P (1 + r)2
f(t) = P (1 + r)t, where t is a natural number.

If we compound interest m times throughout a single time interval then

f(0) = P

f(1) = P (1 + r
m
)m

f(2) = P (1 + r
m
)2m

f(t) = P (1 + r
m
)tm, where t is a natural number.

Consider the situation when P = r = 1. We are interested in determining instan-
taneous compound interest: suppose the bank continuously compounds interest on
our savings account, how much savings do we expect to have at the end of the first
time interval. Mathematically, this means we want to determine the behaviour of
f(1) = (1 + 1

m
)m as m→∞.

Consider the sequence (an), where an = (1 + 1
n
)n. We compute some of the terms

of the sequence

a1 = (1 + 1) = 2,

a2 = (1 + 1
2
)2 = 9

4 = 2.25,

a3 = (1 + 1
3
)3 = 64

27 = 2.37 . . .,
⋮

a1000 = (1 + 1
1000
)1000 = 2.7169 . . .

It appears that (an) is increasing: indeed, by the Binomial Theorem2 we have

(1 + 1

n
)
n

= 1 + n.
1

n
+ n(n − 1)

1.2

1

n2
+ . . . + n.(n − 1) . . .2.1

1.2. . . . .n

1

nn

= 1 + 1 + 1

1.2
(1 − 1

n
) + 1

1.2.3
(1 − 1

n
)(1 − 2

n
) + . . .

+ 1

1.2 . . . n
(1 − 1

n
)(1 − 2

n
)⋯(1 − n − 1

n
)

2Recall, the Binomial Theorem states that

(x + y)n = xn
+ (

n

1
)xn−1y + (

n

2
)xn−2y2 + (

n

3
)xn−3y3 + . . . + (

n

n − 2
)x2yn−2 + (

n

1
)xyn−1 + yn,

where (n
k
) =

n!
k!(n−k)! .
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Each of the expressions

(1 − 1

n
) , (1 − 2

n
) , . . . , (1 − n − 1

n
)

is increasing with respect to n, so that the same is true for any product of these
expressions. Hence, (1 + 1

n
)n also increases with n.

Next, we observe that, for each n = 1,2,3, . . .,

(1 + 1

n
)
n

= 1 + 1 + 1

1.2
(1 − 1

n
) + 1

1.2.3
(1 − 1

n
)(1 − 2

n
) + . . .

+ 1

1.2 . . . n
(1 − 1

n
)(1 − 2

n
)⋯(1 − n − 1

n
)

< 1 + 1 + 1

1.2
+ 1

1.2.3
+ . . . + 1

1.2.3 . . . n

≤ 1 + 1 + 1

2
+ 1

22
+ . . . + 1

2n

We identify this list expression as the sum 2+ sn, where sn is the nth partial sum
of the geometric series ∑∞

n=1
1
2n = 1

2 .
1

1− 1
2

= 1. Hence,

(1 + 1

n
)
n

< 1 + 1 + 1

2
+ 1

22
+ . . . + 1

2n
< 1 + 1 + 1 = 3.

In conclusion, the sequence (an), where an = (1 + 1
n
)n, is increasing and bounded,

and therefore convergent. Define

e
def= lim

n→∞an.

As 2 ≤ an < 3, for every n = 1,2,3, . . ., we must have 2 ≤ e < 3.

Remark 3.4. The number e just defined as the limit of the sequence ((1 + 1
n
)n)

n≥1
is the base of the natural logarithm function. We will see later in the course that

e = 1 + ∑
n=1

∞ 1

n!
= 1 + 1 + 1

1.2
+ 1

1.2.3
+ . . .
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