
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 20 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences, the tools

1 The Squeeze Theorem

Definition 1.1. Let n be a natural number. We define the natural number n!, said
n factorial, to be the product

n! = 1 ⋅ 2 ⋅ 3⋯(n − 1) ⋅ n.

By definition, we set 0!
def
= 1.

Example 1.2. We have 1! = 1, 2! = 1 ⋅ 2 = 2, 3! = 1 ⋅ 2 ⋅ 3 = 6, 4! = 1 ⋅ 2 ⋅ 3 ⋅ 4 = 24.

Consider the sequence (an), where

an =
n!

nn
, n = 1,2,3, . . . .

Check your understanding

1. Write down the first five terms of the sequence (an).

2. Do you think the sequence is increasing, decreasing, bounded?

3. Do you think the sequence is convergent/divergent? If convergent, what do
you expect the limit to be? If divergent, can you explain why?

Draw graph

Spot the pattern Consider the sequence (cn), where cn = 1
n , and plot its graph

above (along with the graph of (an)).
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1. What is the relation between the first five terms of (an) and (cn)?

2. What do you expect to be the relation between the nth terms an and cn?

3. Using the sequence (cn), carefully explain, either, why (an) is convergent and
what its limit is, or, why (an) is divergent.

4. Let (bn) be the sequence bn = 0, for each n = 1,2,3, . . .. What is the relation
between the nth terms of an and bn?

Create your own Theorem!

The Squeeze Theorem

Let (an), (bn) (cn) be sequences, where (bn) and (cn) are convergent. Let
L = limn→∞ bn and L′ = limn→∞ cn satisfy the relation .

Furthermore, assume that, for each n = 1,2,3, . . . ,, the nth terms an, bn, cn,
satisfy the relation .

Then, the sequence (an) is and limn→∞ an =

Example 1.3. 1. Consider the sequence (an), where an = sin(n)/n. Define the
sequences (bn), (cn), where

bn = −
1

n
, cn =

1

n
, n = 1,2,3, . . .

Then, (bn) and (cn) are convergent and

lim
n→∞

bn = 0 = lim
n→∞

cn

Moreover, for each n = 1,2,3, . . .

−
1

n
≤

sin(n)

n
≤

1

n
.

Hence, by the Squeeze Theorem, (an) is convergent and limn→∞ an = 0.

2. We provide a rigorous justification that 0 ≤ n!
nn ≤ 1

n , for each n = 1,2,3, . . .. Of
course, we have n!

nn ≥ 0, for each n = 1,2,3, . . .. Now, for every n = 1,2,3, . . .,

n!

nn
=

1 ⋅ 2 ⋅ 3⋯(n − 1) ⋅ n

n ⋅ n ⋅ n⋯n ⋅ n
=

1

n
(

2 ⋅ 3⋯n

n ⋅ n⋯n
) ≤

1

n
,

because the term in parentheses is ≤ 1.
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Remark 1.4. We have the following (more general) modification of The Squeeze
Theorem, which we will call the Ultimate Squeeze Theorem:

Let (an), (bn) (cn) be sequences, where (bn) and (cn) are convergent.
Suppose

lim
n→∞

bn = L = lim
n→∞

cn.

Furthermore, assume that, there is some natural number n0 ≥ 1 so that

if n ≥ n0 then bn ≤ an ≤ cn.

Then, the sequence (an) is convergent and limn→∞ an = L

2 The Monotonic+Bounded Theorem We have seen several results that allow
us to deduce when a sequence is convergent (e.g. Limit Laws, Squeeze Theorem).
However, we don’t yet have any tools to show that a sequence is divergent (i.e. not
convergent).

Theorem 2.1 (Convergent implies bounded). Let (an) be a convergent
sequence. Then, (an) is bounded.

Proof: Write L = limn→∞ an. Let ε = 1. Then, we must be able to find some N
such that1

n ≥ N Ô⇒ ∣an −L∣ < ε = 1 Ô⇒ L − 1 < an < L + 1.

In particular, for all n ≥ N , we have ∣an∣ < ∣L∣ + 1.
Write K for the largest of the numbers ∣a1∣, . . . , ∣aN ∣, ∣L∣ + 1. Then, for this choice

of K we have ∣an∣ ≤ K, for each n = 1,2,3, . . .. That is, −K ≤ an ≤ K, for each
n = 1,2,3, . . ., so that (an) is bounded.

We will discuss a partial converse2 to the ‘Convergent implies Bounded’ result
just given. But first:

Get creative!
Give three examples of sequences (an), (bn), (cn) that are bounded but not

convergent.

Definition 2.2. Let (an) be a sequence that is either increasing or decreasing (or
both!). Then, we say that (an) is monotonic.

1Recall that the collection of symbols ∣an −L∣ < ε means ‘the distance from an to L is less than
ε’. This is equivalent to the pair of inequalities L − ε < an < L + ε.

2Given a statement ‘if P then Q’, the converse is the statement ‘if Q then P’. Very important
note: in general, the truth of a statement ‘if P then Q’ does not determine the truth of the statement
‘if Q then P’. For example, compare the statements ‘if you are a Vermonter then you are American’
and ‘if you are American then you are a Vermonter’.
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Check your understanding

1. Draw the graphs of three (different) monotonic, bounded sequences (an), (bn),
(cn).

2. What common features do the sequences (an), (bn), (cn) possess?

Create your own Theorem!
Monotonic+Bounded Theorem

Let (an) be a monotonic and bounded sequence. Then, (an) is
.

Remark 2.3. 1. The Monotonic+Bounded Theorem is a little strange: it tells
us that a monotonic, bounded sequence is convergent but does not say say how
to find limn→∞ an! Compare this with the Squeeze Theorem where we not only
show that a sequence is convergent but also obtain its limit.

2. In Problem Set 1 there is a generalisation of the Monotonic+Bounded Theorem:
say that a sequence (an) is eventually monotonic if there is some n0 such
that the sequence (an)n≥n0 is monotonic. For example, if an = n2 − 13n + 30
then the sequence (an) is eventually monotonic (it is eventually increasing: the
sequence (an)n≥7 is increasing).

Example 2.4. Suppose that 0 ≤ x < 1. Consider the sequence (an), where an = xn.
Then, for each n = 1,2,3, . . .

an+1 − an = xn+1 − xn = xn(x − 1) ≤ 0 Ô⇒ an+1 ≤ an, n = 1,2,3, . . . .

Hence, (an) is decreasing. Also, (an) is bounded: for each n = 1,2,3, . . ., we have
0 ≤ an ≤ 1. Therefore, by the Monotonic+Bounded Theorem the sequence (an) is
convergent.
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