
Calculus II: Fall 2017
Contact: gmelvin@middlebury.edu

September 18 Lecture
Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

Sequences, first steps

1 Recap

Definition 1.1. Let (an) be a sequence. We say that (an) is a convergent
sequence with limit L if, for any ε > 0, there is some natural number N
such that

n ≥ N Ô⇒ ∣an −L∣ < ε.

If (an) is not convergent then we say that (an) is divergent.

Remark 1.2. 1. Recall that, for real numbers x, y, the non-negative real number
∣x − y∣ is the (unsigned) distance between x and y. Thus, the mathematical
definition given above is to be read as ‘(an) is convergent with limit L if,
for any ε > 0, the property Dε,L (see September 15 lecture) holds for (an) as
n→∞.’

2. If (an) is convergent with limit L then we write

lim
n→∞

an = L, or an → L as n→∞.

3. Suppose that f(x) is a function defined for all 1 ≤ x ≤ ∞. If (an) is a sequence
so that an = f(n), for n = 1,2,3, . . ., then limn→∞ an = L precisely whenever
limx→∞ f(x) = L.

4. In this class, the adjective divergent is synonymous with not convergent.

Example 1.3. Consider the sequence (an), where an =
1
n . We will show directly

that (an) is convergent with limit L = 0.
Suppose we are given some fixed ε > 0. To verify that (an) satisfies the statement

of Definition 1.1 we have to find an N such that, for each n ≥N, we necessarily have

∣an − 0∣ = ∣
1

n
∣ < ε.

Observe that, since an > 0 for all n = 1,2,3, . . ., we have ∣an∣ = an. Hence, we need
N so that, for each n ≥ N , we necessarily have

1

n
= an = ∣an∣ < ε.
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Rearranging the above inequality, if we take a natural number N >
1
ε then

n ≥ N Ô⇒ n ≥ N >

1

ε
Ô⇒ ∣an∣ =

1

n
< ε.

Thus, we have shown directly that limn→∞
1
n = 0.

2 Limit laws for sequences Showing directly that a sequence (an) is convergent
with limit L (as in the Example above) can be difficult! For example, it (hopefully)
seems intuitive that limn→∞

3n+1
n2+10 = 0 (the denominator will dominate the numerator

as n gets very large), but finding N so that our definition holds looks like a formidable
task. This is why mathematical Theorems/Propositions are helpful - they provide
us with power tools that can make life easier.

Let (an) be a sequence and consider its graph. Then, it’s always possible to find
a function f(x), defined for all 1 ≤ x < ∞, such that f(n) = an: indeed, the function
f(x) whose graph is obtained by drawing straight line segments between (n, an), for
n = 1,2,3, . . ., is such a function.

Draw graph

Using this observation and Remark 1.2 we can use the limit laws of real-valued
functions to immediately obtain the following helpful result.

Proposition 2.1 (Limit Laws for Sequences). Let (an), (bn) be convergent
sequences, c a constant. Then,

1. limn→∞(an ± bn) = limn→∞ an ± limn→∞ bn,

2. limn→∞ can = c limn→∞ an,

3. limn→∞ anbn = (limn→∞ an) (limn→∞ an) (limn→∞ bn),

4. limn→∞
an
bn

=
limn→∞ an
limn→∞ bn

, whenever limn→∞ bn ≠ 0,

5. limn→∞ arn = (limn→∞ an)
r
, if r > 0 and an > 0, for n = 1,2,3, . . ..

Create your own Theorem!

1. Use the Example from Section 1 and the Limit Laws to complete the following
statement:

Let r > . Then, limn→∞
1
nr = .

2. Explain carefully why your completed statement is true.
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Mathematical workout - flex those muscles

1. Consider the sequence (an), where an =
2n+1
n+3 .

(a) Show that an =
2+ 1

n

1+ 3
n

.

(b) Use the Limit Laws to give a careful explanation why limn→∞ an exists
and is equal to 2.

2. Explain carefully why the sequence (an) is convergent, where an =
3n4

+10n2
−1

5n10−2n7+3n2+n−1 ,
and determine its limit.

Remark 2.2. In Problem Set 1 you will formulate and prove a statement determining
precise conditions describing when a sequence (an) is convergent, where

an =
αrnr

+ αr−1nr−1
+ . . . + α1n + α0

βsns
+ βs−1ns−1

+ . . . β1n + β0

is a well-defined rational expression function of n. You will also determine conditions
that allow you to find the limit of convergent sequences of this form.

3 The Squeeze Theorem

Definition 3.1. Let n be a natural number. We define the natural number n!, said
n factorial, to be the product

n! = 1 ⋅ 2 ⋅ 3⋯(n − 1) ⋅ n.

By definition, we set 0!
def
= 1.

Example 3.2. We have 1! = 1, 2! = 1 ⋅ 2 = 2, 3! = 1 ⋅ 2 ⋅ 3 = 6, 4! = 1 ⋅ 2 ⋅ 3 ⋅ 4 = 24.

Consider the sequence (an), where

an =
n!

nn
, n = 1,2,3, . . . .

Check your understanding

1. Write down the first five terms of the sequence (an).
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2. Do you think the sequence is increasing, decreasing, bounded?

3. Do you think the sequence is convergent/divergent? If convergent, what do
you expect the limit to be? If divergent, can you explain why?

Draw graph

Spot the pattern Consider the sequence (cn), where cn =
1
n , and plot its graph

above (along with the graph of (an)).

1. What is the relation between the first five terms of (an) and (cn)?

2. What do you expect to be the relation between the nth terms an and cn?

3. Using the sequence (cn), carefully explain, either, why (an) is convergent and
what its limit is, or, why (an) is divergent.
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