Calculus II: Fall 2017

Contact: gmelvin@middlebury.edu

## September 18 Lecture

SUPPLEMENTARY REFERENCES:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

## SEQUENCES, FIRST STEPS

## 1 Recap

**Definition 1.1.** Let  $(a_n)$  be a sequence. We say that  $(a_n)$  is a **convergent sequence with limit** L if, for any  $\epsilon > 0$ , there is some natural number N such that

$$n \ge N \implies |a_n - L| < \varepsilon.$$

If  $(a_n)$  is not convergent then we say that  $(a_n)$  is **divergent**.

**Remark 1.2.** 1. Recall that, for real numbers x, y, the non-negative real number |x - y| is the (unsigned) distance between x and y. Thus, the mathematical definition given above is to be read as ' $(a_n)$  is convergent with limit L if, for any  $\varepsilon > 0$ , the property  $D_{\varepsilon,L}$  (see September 15 lecture) holds for  $(a_n)$  as  $n \to \infty$ .'

2. If  $(a_n)$  is convergent with limit L then we write

$$\lim_{n\to\infty} a_n = L, \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

- 3. Suppose that f(x) is a function defined for all  $1 \le x \le \infty$ . If  $(a_n)$  is a sequence so that  $a_n = f(n)$ , for  $n = 1, 2, 3, \ldots$ , then  $\lim_{n \to \infty} a_n = L$  precisely whenever  $\lim_{x \to \infty} f(x) = L$ .
- 4. In this class, the adjective divergent is synonymous with not convergent.

**Example 1.3.** Consider the sequence  $(a_n)$ , where  $a_n = \frac{1}{n}$ . We will show directly that  $(a_n)$  is convergent with limit L = 0.

Suppose we are given some fixed  $\varepsilon > 0$ . To verify that  $(a_n)$  satisfies the statement of Definition 1.1 we have to find an N such that, for each  $n \ge N$ , we necessarily have

$$|a_n - 0| = \left| \frac{1}{n} \right| < \varepsilon.$$

Observe that, since  $a_n > 0$  for all n = 1, 2, 3, ..., we have  $|a_n| = a_n$ . Hence, we need N so that, for each  $n \ge N$ , we necessarily have

$$\frac{1}{n} = a_n = |a_n| < \varepsilon.$$

Rearranging the above inequality, if we take a natural number  $N > \frac{1}{\varepsilon}$  then

$$n \ge N \quad \Longrightarrow \quad n \ge N > \frac{1}{\varepsilon} \quad \Longrightarrow \quad |a_n| = \frac{1}{n} < \varepsilon.$$

Thus, we have shown directly that  $\lim_{n\to\infty} \frac{1}{n} = 0$ .

**2 Limit laws for sequences** Showing directly that a sequence  $(a_n)$  is convergent with limit L (as in the Example above) can be difficult! For example, it (hopefully) seems intuitive that  $\lim_{n\to\infty} \frac{3n+1}{n^2+10} = 0$  (the denominator will dominate the numerator as n gets very large), but finding N so that our definition holds looks like a formidable task. This is why mathematical Theorems/Propositions are helpful - they provide us with power tools that can make life easier.

Let  $(a_n)$  be a sequence and consider its graph. Then, it's always possible to find a function f(x), defined for all  $1 \le x < \infty$ , such that  $f(n) = a_n$ : indeed, the function f(x) whose graph is obtained by drawing straight line segments between  $(n, a_n)$ , for  $n = 1, 2, 3, \ldots$ , is such a function.

Draw Graph

Using this observation and Remark 1.2 we can use the limit laws of real-valued functions to immediately obtain the following helpful result.

**Proposition 2.1** (LIMIT LAWS FOR SEQUENCES). Let  $(a_n)$ ,  $(b_n)$  be convergent sequences, c a constant. Then,

- 1.  $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$ ,
- 2.  $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$ ,
- 3.  $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} a_n) (\lim_{n\to\infty} b_n)$
- 4.  $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$ , whenever  $\lim_{n\to\infty} b_n \neq 0$ ,
- 5.  $\lim_{n\to\infty} a_n^r = (\lim_{n\to\infty} a_n)^r$ , if r > 0 and  $a_n > 0$ , for  $n = 1, 2, 3, \dots$

CREATE YOUR OWN THEOREM!

1. Use the Example from Section 1 and the Limit Laws to complete the following statement:

2

Let 
$$r > \underline{\hspace{1cm}}$$
. Then,  $\lim_{n \to \infty} \frac{1}{n^r} = \underline{\hspace{1cm}}$ .

2. Explain carefully why your completed statement is true.

MATHEMATICAL WORKOUT - FLEX THOSE MUSCLES

- 1. Consider the sequence  $(a_n)$ , where  $a_n = \frac{2n+1}{n+3}$ .
  - (a) Show that  $a_n = \frac{2 + \frac{1}{n}}{1 + \frac{3}{n}}$ .
  - (b) Use the Limit Laws to give a careful explanation why  $\lim_{n\to\infty} a_n$  exists and is equal to 2.
- 2. Explain carefully why the sequence  $(a_n)$  is convergent, where  $a_n = \frac{3n^4 + 10n^2 1}{5n^{10} 2n^7 + 3n^2 + n 1}$ , and determine its limit.

**Remark 2.2.** In Problem Set 1 you will formulate and prove a statement determining precise conditions describing when a sequence  $(a_n)$  is convergent, where

$$a_n = \frac{\alpha_r n^r + \alpha_{r-1} n^{r-1} + \dots + \alpha_1 n + \alpha_0}{\beta_s n^s + \beta_{s-1} n^{s-1} + \dots + \beta_1 n + \beta_0}$$

is a well-defined rational expression function of n. You will also determine conditions that allow you to find the limit of convergent sequences of this form.

## 3 The Squeeze Theorem

**Definition 3.1.** Let n be a natural number. We define the natural number n!, said n factorial, to be the product

$$n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n.$$

By definition, we set  $0! \stackrel{def}{=} 1$ .

**Example 3.2.** We have 1! = 1,  $2! = 1 \cdot 2 = 2$ ,  $3! = 1 \cdot 2 \cdot 3 = 6$ ,  $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$ .

Consider the sequence  $(a_n)$ , where

$$a_n = \frac{n!}{n^n}, \quad n = 1, 2, 3, \dots$$

3

CHECK YOUR UNDERSTANDING

1. Write down the first five terms of the sequence  $(a_n)$ .

| $\circ$ | $\mathbf{r}$ |      | .1 • 1  | . 1     |         |    |           |      | 1 .           | 1 1 10    |
|---------|--------------|------|---------|---------|---------|----|-----------|------|---------------|-----------|
| 2       | D0           | VOII | think   | the se  | equence | 18 | increa    | sing | decreasing,   | bounded ( |
|         |              | .,   | CITITIE | CIIC DC | querre  | 10 | III CI CG | ~    | acci casiiis, | boamaca.  |

3. Do you think the sequence is convergent/divergent? If convergent, what do you expect the limit to be? If divergent, can you explain why?

Draw Graph

SPOT THE PATTERN Consider the sequence  $(c_n)$ , where  $c_n = \frac{1}{n}$ , and plot its graph above (along with the graph of  $(a_n)$ ).

- 1. What is the relation between the first five terms of  $(a_n)$  and  $(c_n)$ ?
- 2. What do you expect to be the relation between the  $n^{th}$  terms  $a_n$  and  $c_n$ ?
- 3. Using the sequence  $(c_n)$ , carefully explain, either, why  $(a_n)$  is convergent and what its limit is, or, why  $(a_n)$  is divergent.