Calculus II: Fall 2017

Contact: gmelvin@middlebury.edu

September 18 Lecture

Supplementary References:

- Single Variable Calculus, Stewart, 7th Ed.: Section 11.1.
- Calculus, Spivak, 3rd Ed.: Section 22.
- AP Calculus BC, Khan Academy: Infinite sequences.

> SEQUENCES, FIRST STEPS

1 Recap

Definition 1.1. Let $\left(a_{n}\right)$ be a sequence. We say that $\left(a_{n}\right)$ is a convergent sequence with limit L if, for any $\epsilon>0$, there is some natural number N such that

$$
n \geq N \quad \Longrightarrow \quad\left|a_{n}-L\right|<\varepsilon .
$$

If $\left(a_{n}\right)$ is not convergent then we say that $\left(a_{n}\right)$ is divergent.
Remark 1.2. 1. Recall that, for real numbers x, y, the non-negative real number $|x-y|$ is the (unsigned) distance between x and y. Thus, the mathematical definition given above is to be read as ' $\left(a_{n}\right)$ is convergent with limit L if, for any $\varepsilon>0$, the property $D_{\varepsilon, L}$ (see September 15 lecture) holds for $\left(a_{n}\right)$ as $n \rightarrow \infty$.'
2. If $\left(a_{n}\right)$ is convergent with limit L then we write

$$
\lim _{n \rightarrow \infty} a_{n}=L, \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty .
$$

3. Suppose that $f(x)$ is a function defined for all $1 \leq x \leq \infty$. If $\left(a_{n}\right)$ is a sequence so that $a_{n}=f(n)$, for $n=1,2,3, \ldots$, then $\lim _{n \rightarrow \infty} a_{n}=L$ precisely whenever $\lim _{x \rightarrow \infty} f(x)=L$.
4. In this class, the adjective divergent is synonymous with not convergent.

Example 1.3. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{1}{n}$. We will show directly that $\left(a_{n}\right)$ is convergent with $\operatorname{limit} L=0$.

Suppose we are given some fixed $\varepsilon>0$. To verify that $\left(a_{n}\right)$ satisfies the statement of Definition 1.1 we have to find an N such that, for each $n \geq \mathrm{N}$, we necessarily have

$$
\left|a_{n}-0\right|=\left|\frac{1}{n}\right|<\varepsilon .
$$

Observe that, since $a_{n}>0$ for all $n=1,2,3, \ldots$, we have $\left|a_{n}\right|=a_{n}$. Hence, we need N so that, for each $n \geq N$, we necessarily have

$$
\frac{1}{n}=a_{n}=\left|a_{n}\right|<\varepsilon .
$$

Rearranging the above inequality, if we take a natural number $N>\frac{1}{\varepsilon}$ then

$$
n \geq N \quad \Longrightarrow \quad n \geq N>\frac{1}{\varepsilon} \quad \Longrightarrow \quad\left|a_{n}\right|=\frac{1}{n}<\varepsilon
$$

Thus, we have shown directly that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
2 Limit laws for sequences Showing directly that a sequence $\left(a_{n}\right)$ is convergent with limit L (as in the Example above) can be difficult! For example, it (hopefully) seems intuitive that $\lim _{n \rightarrow \infty} \frac{3 n+1}{n^{2}+10}=0$ (the denominator will dominate the numerator as n gets very large), but finding N so that our definition holds looks like a formidable task. This is why mathematical Theorems/Propositions are helpful - they provide us with power tools that can make life easier.

Let $\left(a_{n}\right)$ be a sequence and consider its graph. Then, it's always possible to find a function $f(x)$, defined for all $1 \leq x<\infty$, such that $f(n)=a_{n}$: indeed, the function $f(x)$ whose graph is obtained by drawing straight line segments between $\left(n, a_{n}\right)$, for $n=1,2,3, \ldots$, is such a function.

DRAW GRAPH

Using this observation and Remark 1.2 we can use the limit laws of real-valued functions to immediately obtain the following helpful result.
Proposition 2.1 (Limit Laws for Sequences). Let $\left(a_{n}\right)$, $\left(b_{n}\right)$ be convergent sequences, c a constant. Then,

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$,
2. $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$,
3. $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$,
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, whenever $\lim _{n \rightarrow \infty} b_{n} \neq 0$,
5. $\lim _{n \rightarrow \infty} a_{n}^{r}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{r}$, if $r>0$ and $a_{n}>0$, for $n=1,2,3, \ldots$.

Create your own Theorem!

1. Use the Example from Section 1 and the Limit Laws to complete the following statement:

Let $r>$ \qquad . Then, $\lim _{n \rightarrow \infty} \frac{1}{n^{r}}=$ \qquad .
2. Explain carefully why your completed statement is true.

1. Consider the sequence $\left(a_{n}\right)$, where $a_{n}=\frac{2 n+1}{n+3}$.
(a) Show that $a_{n}=\frac{2+\frac{1}{n}}{1+\frac{3}{n}}$.
(b) Use the Limit Laws to give a careful explanation why $\lim _{n \rightarrow \infty} a_{n}$ exists and is equal to 2 .
2. Explain carefully why the sequence $\left(a_{n}\right)$ is convergent, where $a_{n}=\frac{3 n^{4}+10 n^{2}-1}{5 n^{10}-2 n^{7}+3 n^{2}+n-1}$, and determine its limit.

Remark 2.2. In Problem Set 1 you will formulate and prove a statement determining precise conditions describing when a sequence $\left(a_{n}\right)$ is convergent, where

$$
a_{n}=\frac{\alpha_{r} n^{r}+\alpha_{r-1} n^{r-1}+\ldots+\alpha_{1} n+\alpha_{0}}{\beta_{s} n^{s}+\beta_{s-1} n^{s-1}+\ldots \beta_{1} n+\beta_{0}}
$$

is a well-defined rational expression function of n. You will also determine conditions that allow you to find the limit of convergent sequences of this form.

3 The Squeeze Theorem

Definition 3.1. Let n be a natural number. We define the natural number n !, said n factorial, to be the product

$$
n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n .
$$

By definition, we set $0!\stackrel{\text { def }}{=} 1$.
Example 3.2. We have $1!=1,2!=1 \cdot 2=2,3!=1 \cdot 2 \cdot 3=6,4!=1 \cdot 2 \cdot 3 \cdot 4=24$.
Consider the sequence $\left(a_{n}\right)$, where

$$
a_{n}=\frac{n!}{n^{n}}, \quad n=1,2,3, \ldots
$$

Check your understanding

1. Write down the first five terms of the sequence $\left(a_{n}\right)$.
2. Do you think the sequence is increasing, decreasing, bounded?
3. Do you think the sequence is convergent/divergent? If convergent, what do you expect the limit to be? If divergent, can you explain why?

Draw graph

Spot the pattern Consider the sequence $\left(c_{n}\right)$, where $c_{n}=\frac{1}{n}$, and plot its graph above (along with the graph of $\left(a_{n}\right)$).

1. What is the relation between the first five terms of $\left(a_{n}\right)$ and $\left(c_{n}\right)$?
2. What do you expect to be the relation between the $n^{\text {th }}$ terms a_{n} and c_{n} ?
3. Using the sequence $\left(c_{n}\right)$, carefully explain, either, why $\left(a_{n}\right)$ is convergent and what its limit is, or, why $\left(a_{n}\right)$ is divergent.
