

Contact: gmelvin@middlebury.edu

September 14 Lecture

SEQUENCES, AN INTRODUCTION

1 The Natural Numbers. Define the NATURAL NUMBERS to be the collection of all positive integers

 $1, 2, 3, 4, 5, \ldots$

Denote by \mathbb{N} the collection of natural numbers. The variable n will frequently be used to denote an arbitrary natural number.

In this lecture we will begin an investigation in to the behaviour of real-valued functions f(n), having domain \mathbb{N} : this means that, to every natural number n we are associating a real number f(n).

2 The phrase "*n* tends to ∞ ". Let f(n) be some real-valued function, where *n* is a natural number. Here are some examples:

Example 2.1.,

- 1. $f(n) = p_n$, where p_n is the n^{th} prime number; f(1) = 2, f(2) = 3, f(3) = 5, etc.
- 2. $f(n) = n^2 + 2$.
- 3. $f(n) = (-1)^n$; f(1) = -1, f(2) = 1, f(3) = -1, etc.
- 4. $f(n) = 1 \frac{1}{n}$; f(1) = 0, $f(2) = \frac{1}{2}$, $f(3) = \frac{2}{3}$, $f(4) = \frac{3}{4}$, etc.
- 5. $f(n) = n^{th}$ decimal digit of π ; f(1) = 1, f(2) = 4, f(3) = 1, f(4) = 5, etc.
- 6. $f(n) = S_n$, where S_n is the n^{th} Riemann sum of the function g(x) = x + 1, $1 \le x \le 2$ (see September 11 Worksheet).
- 7. f(n) = area of K(n), where K(n) is the n^{th} Koch snowflake (see September 11 Worksheet).

Suppose that P is some given property that we wish to check of a real number y: for example, P could be the property

y > 1',

or the property

'the distance from y to
$$-\frac{1}{2}$$
 is less than 0.001'.

Consider the collection of all real numbers y = f(n), where n is a natural number (i.e. the collection of *all outputs* of the function f(n)). Then, exactly one of the following three Conditions must hold:

(I) property P is true for y = f(n), for all but finitely many n.

- (II) property P is false for y = f(n), except for finitely many n.
- (III) neither (I) nor (II).

We will say that f(n) satisfies Condition (I), (II) or (III) for property P.

CHECK YOUR UNDERSTANDING

Let P be the property 'y is an integer'. Determine the Condition ((I), (II) or (III)) that the following functions satisfy for property P:

1. $f(n) = \frac{p_n}{5}$, where p_n is the n^{th} prime number.

2.
$$f(n) = \cos(n\pi)$$
.

3. $f(n) = 24\left(\frac{1+(-1)^n}{n}\right)$

Hint: it will be useful to write down f(n) for some values of n; try to spot patterns!

Solution:

Get Creative!

- 1. Provide an example of a property P and a function f(n) so that f(n) satisfies condition (I) for property P
- 2. Provide an example of a property P and a function f(n) so that f(n) satisfies condition (II)
- 3. Provide an example of a property P and a function f(n) so that f(n) satisfies condition (III)

Provide an example of two properties P and Q and a single function f(n) so

4. that f(n) satisfies condition (I) for property P but it satisfies condition (II) for property Q.

Hint: make life simple for yourself; don't try to come up with overly elaborate properties or functions.

Solution:

We will now consider Condition (I) in more detail.

Let P be a property and f(n) a function satisfying Condition (I) for property P. Then, there can exist at most finitely many (possibly zero!) inputs n_1, \ldots, n_k such that property P **does not** hold for $f(n_1), \ldots, f(n_k)$. Note: the inputs n_1, \ldots, n_k are not necessarily the first k natural numbers.

Let N be a natural number that is larger than each of n_1, \ldots, n_k . Then, for every $n \ge N$, property P holds for f(n).

Example 2.2. Let P be the property 'y is <u>not</u> an integer', and let $f(n) = \frac{p_n}{5}$, where p_n is the n^{th} prime number. Then, we have

$$f(1) = \frac{2}{5}, \quad f(2) = \frac{3}{5}, \quad f(3) = \frac{5}{5} = 1, \quad f(4) = \frac{7}{5}, \quad f(5) = \frac{11}{5}, \quad etc.$$

We see that property P holds for property P only if n = 3. Hence, if we take N = 4 then, for every $n \ge N$, property P holds for f(n). In words, whenever n is greater than or equal to 4, the value $f(n) = \frac{p_n}{5}$ is not an integer.

We record our observation below.

To say that a function f(n) satisfies Condition (I) for property P is precisely the same as saying that there exists some large natural number N so that, for every $n \ge N$, property P holds for f(n).

CHECK YOUR UNDERSTANDING

Suppose that f(n) satisfies Condition (I) for property P. Which of the following phrases are accurate:

- 1. property P holds for f(n) for arbitrary n.
- 2. property P holds for f(n) for sufficiently large n.
- 3. property P holds for f(n) for $n \ge 1,000,000,000,000,000,000$.
- 4. property P eventually holds for f(n).

Definition 2.3. Let f(n) be a real-valued function, where n is a variable assigned natural numbers only. Let P be a property. We say that **property** P **holds for** f(n) as n goes to infinity if f(n) satisfies Condition (I) for property P. We will often write property P holds for f(n) as $n \to \infty$.

As a rigorous mathematical statement we have the following:

property P holds for f(n) as $n \to \infty$ if there exists a natural number N such that, for every $n \ge N$, property P holds for f(n).

3 Sequences

Definition 3.1. Let f(n) be a real-valued function, where n is a variable assigned natural numbers only. The collection of all outputs of the function f(n) is called a **sequence**.

A sequence can be considered as an infinitely long list:

We will frequently denote a sequence

$$(a_n) = (a_1, a_2, a_3, a_4, \dots, a_n, \dots)$$

where $a_n = f(n)$. In particular, we care about how we <u>order</u> the outputs of f(n). CHECK YOUR UNDERSTANDING

- 1. For the first four functions given in Example 2.1 write down the corresponding sequence.
- 2. Plot a graph of the first four functions given in Example 2.1.
- 3. What general features do the graphs exhibit? Describe as many features as you can.