Calculus II: Fall 2017

Contact: gmelvin@middlebury.edu

SEPTEMBER 14 Lecture

SEQUENCES, AN INTRODUCTION

1 The Natural Numbers. Define the natural numbers to be the collection of all positive integers

$$
1, \quad 2, \quad 3, \quad 4, \quad 5, \quad \ldots
$$

Denote by \mathbb{N} the collection of natural numbers. The variable n will frequently be used to denote an arbitrary natural number.

In this lecture we will begin an investigation in to the behaviour of real-valued functions $f(n)$, having domain \mathbb{N} : this means that, to every natural number n we are associating a real number $f(n)$.

2 The phrase " n tends to ∞ ". Let $f(n)$ be some real-valued function, where n is a natural number. Here are some examples:

Example 2.1. ,

1. $f(n)=p_{n}$, where p_{n} is the $n^{\text {th }}$ prime number; $f(1)=2, f(2)=3, f(3)=5$, etc.
2. $f(n)=n^{2}+2$.
3. $f(n)=(-1)^{n} ; f(1)=-1, f(2)=1, f(3)=-1$, etc.
4. $f(n)=1-\frac{1}{n} ; f(1)=0, f(2)=\frac{1}{2}, f(3)=\frac{2}{3}, f(4)=\frac{3}{4}$, etc.
5. $f(n)=n^{\text {th }}$ decimal digit of $\pi ; f(1)=1, f(2)=4, f(3)=1, f(4)=5$, etc.
6. $f(n)=S_{n}$, where S_{n} is the $n^{t h}$ Riemann sum of the function $g(x)=x+1$, $1 \leq x \leq 2$ (see September 11 Worksheet).
7. $f(n)=$ area of $K(n)$, where $K(n)$ is the $n^{\text {th }}$ Koch snowflake (see September 11 Worksheet).

Suppose that P is some given property that we wish to check of a real number y : for example, P could be the property

$$
' y>1 \text { ', }
$$

or the property
'the distance from y to $-\frac{1}{2}$ is less than 0.001 '.
Consider the collection of all real numbers $y=f(n)$, where n is a natural number (i.e. the collection of all outputs of the function $f(n)$). Then, exactly one of the following three Conditions must hold:
(I) property P is true for $y=f(n)$, for all but finitely many n.
(II) property P is false for $y=f(n)$, except for finitely many n.
(III) neither (I) nor (II).

We will say that $f(n)$ satisfies Condition (I), (II) or (III) for property P.

Check your understanding

Let P be the property ' y is an integer'. Determine the Condition ((I), (II) or (III)) that the following functions satisfy for property P :

1. $f(n)=\frac{p_{n}}{5}$, where p_{n} is the $n^{\text {th }}$ prime number.
2. $f(n)=\cos (n \pi)$.
3. $f(n)=24\left(\frac{1+(-1)^{n}}{n}\right)$

Hint: it will be useful to write down $f(n)$ for some values of n; try to spot patterns!

Solution:

Get Creative!

1. Provide an example of a property P and a function $f(n)$ so that $f(n)$ satisfies condition (I) for property P
2. Provide an example of a property P and a function $f(n)$ so that $f(n)$ satisfies condition (II)
3. Provide an example of a property P and a function $f(n)$ so that $f(n)$ satisfies condition (III)

Provide an example of two properties P and Q and a single function $f(n)$ so
4. that $f(n)$ satisfies condition (I) for property P but it satisfies condition (II) for property Q.
Hint: make life simple for yourself; don't try to come up with overly elaborate properties or functions.

Solution:

We will now consider Condition (I) in more detail.
Let P be a property and $f(n)$ a function satisfying Condition (I) for property P. Then, there can exist at most finitely many (possibly zero!) inputs n_{1}, \ldots, n_{k} such that property P does not hold for $f\left(n_{1}\right), \ldots, f\left(n_{k}\right)$. Note: the inputs n_{1}, \ldots, n_{k} are not necessarily the first k natural numbers.

Let N be a natural number that is larger than each of n_{1}, \ldots, n_{k}. Then, for every $n \geq N$, property P holds for $f(n)$.

Example 2.2. Let P be the property ' y is not an integer', and let $f(n)=\frac{p_{n}}{5}$, where p_{n} is the $n^{\text {th }}$ prime number. Then, we have

$$
f(1)=\frac{2}{5}, \quad f(2)=\frac{3}{5}, \quad f(3)=\frac{5}{5}=1, \quad f(4)=\frac{7}{5}, \quad f(5)=\frac{11}{5}, \quad \text { etc. }
$$

We see that property P holds for property P only if $n=3$. Hence, if we take $N=4$ then, for every $n \geq N$, property P holds for $f(n)$. In words, whenever n is greater than or equal to 4 , the value $f(n)=\frac{p_{n}}{5}$ is not an integer.

We record our observation below.

To say that a function $f(n)$ satisfies Condition (I) for property P is precisely the same as saying that there exists some large natural number N so that, for every $n \geq N$, property P holds for $f(n)$.

Check your understanding

Suppose that $f(n)$ satisfies Condition (I) for property P. Which of the following phrases are accurate:

1. property P holds for $f(n)$ for arbitrary n.
2. property P holds for $f(n)$ for sufficiently large n.
3. property P holds for $f(n)$ for $n \geq 1,000,000,000,000,000,000$.
4. property P eventually holds for $f(n)$.

Definition 2.3. Let $f(n)$ be a real-valued function, where n is a variable assigned natural numbers only. Let P be a property. We say that property P holds for $f(n)$ as n goes to infinity if $f(n)$ satisfies Condition (I) for property P. We will often write property P holds for $f(n)$ as $n \rightarrow \infty$.

As a rigorous mathematical statement we have the following:
property P holds for $f(n)$ as $n \rightarrow \infty$ if there exists a natural number N such that, for every $n \geq N$, property P holds for $f(n)$.

3 Sequences

Definition 3.1. Let $f(n)$ be a real-valued function, where n is a variable assigned natural numbers only. The collection of all outputs of the function $f(n)$ is called a sequence.

A sequence can be considered as an infinitely long list:

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & \cdots & n & \cdots \\
f(1) & f(2) & f(3) & f(4) & \cdots & f(n) & \cdots
\end{array}
$$

We will frequently denote a sequence

$$
\left(a_{n}\right)=\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots\right)
$$

where $a_{n}=f(n)$. In particular, we care about how we order the outputs of $f(n)$.
Check your understanding

1. For the first four functions given in Example 2.1 write down the corresponding sequence.
2. Plot a graph of the first four functions given in Example 2.1.
3. What general features do the graphs exhibit? Describe as many features as you can.
