Middlebury Calculus II: Fall 2017
College Contact: gmelvin@middlebury.edu

COURSE REVIEW PROBLEMS
The following resources provide additional problems:
e Single Variable Calculus, Stewart
e Khan Academy, https://www.khanacademy.org/math/calculus-home
x = standard, similar to exam problems. *x = more difficult than exam problems.

PROBLEMS ON SEQUENCES & SERIES

Determine whether the sequence (a,,) or series > b, converges. Wherever possible, determine the limit.
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1.« Define the sequence (a,) by
a =1, ap1=+Va,+6, forn>1.

(a) Using induction, show that (a,) is increasing.
(b) Using induction, show that 1 < a, <3, forn=1,2,3,....
(¢) Deduce that (a,) is convergent and determine L = lim,, o ay,.

2. x Define the sequence (a,) by

a, +1
4 9

a1 =17, Qpy1 = for n > 1.

(a) Using induction, show that (a,) is decreasing.

(b) Using induction, show that 0 < a, <7, forn=1,2,3,....



(c) Deduce that (a,) is convergent and determine L = lim,,_,, a,,.

3. * Define the sequence (a,) by

a; =05, ap1 =+V2a,+3, forn>1.

(a) Using induction, show that (a,) is decreasing.

(b) Using induction, show that 3 < a, <5, forn=1,2,3,....

(c) Deduce that (a,) is convergent and determine L = lim,, ., a,.
TECHNIQUES OF INTEGRATION

Solve the following antiderivative problems.
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Determine whether the integral is convergent or divergent. Evaluate those that are convergent.
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DIFFERENTIAL EQUATIONS

Determine the general solution to the differential equation. If a given initial value is provided, determine
the unique solution satisfying the initial condition.
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POWER SERIES
Determine the centre and the interval of convergence for the power series.
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TAYLOR SERIES

Determine the Taylor series of f(x) at ¢, either using the definition of the Taylor series or by playing
the ‘Calculus Game’ and using known series representations of functions.
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Using Taylor’s Inequality determine the values of x for which the Taylor series at ¢ = 0 converges to f(x).
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Show that the series is convergent and use an appropriate power series to determine its limit.
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