Calculus II: Fall 2017 Problem Set 5

Contact: gmelvin@middlebury.edu

Keywords: integration by parts, integration by substitution, inverse trigonometric substitution.

Problems for submission

- A1. Determine the following integrals using the technique specified.
 - (i) Integration by substitution:

a)
$$\int x \exp(-x^2) dx$$

b)
$$\int \frac{\log(x)}{x} dx$$

c)
$$\int x\sqrt{1-x^2}dx$$

d)
$$\int \frac{x}{\sqrt{1-x^4}} dx$$

e)
$$\int \log(\cos(x)) \tan(x) dx$$

f)
$$\int \frac{1}{x \log(x)} dx$$

g)
$$\int \frac{\exp(\sqrt{x})}{\sqrt{x}} dx$$

a)
$$\int x \exp(-x^2) dx$$
 b) $\int \frac{\log(x)}{x} dx$ c) $\int x \sqrt{1 - x^2} dx$ d) $\int \frac{x}{\sqrt{1 - x^4}} dx$ e) $\int \log(\cos(x)) \tan(x) dx$ f) $\int \frac{1}{x \log(x)} dx$ g) $\int \frac{\exp(\sqrt{x})}{\sqrt{x}} dx$ h) $\int \frac{\exp(x)}{\exp(2x) + 2 \exp(x) + 1} dx$

(ii) Integration by parts:

a)
$$\int x \exp(x) dx$$

b)
$$\int x^3 \exp(x^2) dx$$

a)
$$\int x \exp(x) dx$$
 b) $\int x^3 \exp(x^2) dx$ c) $\int \exp(x) \sin(2x) dx$

d)
$$\int (\log(x))^3 dx$$

d)
$$\int (\log(x))^3 dx$$
 e) $\int \arctan(x) dx$ f) $\int \sqrt{x} \log(x) dx$

f)
$$\int \sqrt{x} \log(x) dx$$

(a) Determine the following trigonometric integrals.

a)
$$\int \tan^2(x)dx$$
 b) $\int x \sin^2(x)dx$ c) $\int (2-\sin(x))^2 dx$ d) $\int \frac{\cos(x)}{\sin^2(x)} dx$ e) $\int \frac{1}{1-\sin(x)} dx$

c)
$$\int (2 - \sin(x))^2$$

d)
$$\int \frac{\cos(x)}{\sin^2(x)} dx$$

$$\int \frac{1}{1-\sin(x)} dx$$

(b) Determine the following integrals using inverse trigonometric substitution.

a)
$$\int x^3 \sqrt{1-x^2} dx$$
 b) $\int \sqrt{1-4x^2} dx$ c) $\int \frac{\sqrt{1+x^2}}{x} dx$ d) $\int \frac{x}{\sqrt{x^2+x+1}} dx$ e) $\int \sqrt{x^2+2x} dx$

$$\int \sqrt{1 - 4x^2} dx$$

c)
$$\int \frac{\sqrt{1+x^2}}{x} dx$$

$$d) \int \frac{x}{\sqrt{x^2 + x + 1}} dx$$

$$\int \sqrt{x^2 + 2x} dx$$

You will want to recall how to complete the square. Use the following inverse trigonometric substitutions

$$x = a\sin(t) \quad \leftrightarrow \quad \sqrt{a^2}$$

$$x = a\sin(t) \leftrightarrow \sqrt{a^2 - x^2}$$

$$x = a\tan(t) \leftrightarrow \sqrt{a^2 + x^2}$$

$$x = a\sec(t) \leftrightarrow \sqrt{x^2 - a^2}$$

$$x = a \sec(t) \leftrightarrow \sqrt{x^2 - a^2}$$

- A3. In this problem you will investigate certain integration reduction formulae.
 - (a) Let $n \ge 0$ be an integer. Define

$$I_n = \int x^n \exp(x) dx$$

i. Use integration by parts to show the following reduction formula

$$I_n = x^n \exp(x) - nI_{n-1}$$

- ii. Show that $I_0 = \exp(x)$.
- iii. Use the reduction formula to compute

$$\int x^3 \exp(x) dx$$

(Hint: use repeated applications of the reduction formulae to write I_3 in terms of I_0)

(b) Let $n \ge 0$ be an integer. Define

$$J_n = \int \sin^n(x) dx$$

i. Use integration by parts to show the following reduction formula

$$J_n = -\frac{1}{n}\sin^{n-1}(x)\cos(x) + \frac{n-1}{n}J_{n-2}$$

- ii. Show that $J_0 = x$ and $J_1 = -\cos(x)$.
- iii. Use the reduction formula to determine

$$\int \sin^4(x) dx$$

(Hint: use repeated applications of the reduction formula to determine J_4 in terms of J_0)

- iv. Now, use the formula for $\sin^2(x)$ to determine $\int \sin^4(x) dx$. Deduce a (possibly) new trigonometric identity.
- A4. In this problem you will investigate integrals of the form

$$\int \tan^m(x) \sec^n(x) dx$$

where $m, n \geq 0$ are integers.

- (a) Explain why $\sec^2(x) = 1 + \tan^2(x)$.
- (b) Determine $\frac{d}{dx}\tan(x)$ and $\frac{d}{dx}\sec(x)$.
- (c) Use the method of substitution to determine

$$\int \tan^4(x) \sec^6(x) dx$$

(d) Use the method of substitution to determine

$$\int \tan^7(x) \sec^3(x) dx$$

(e) Let $n \ge 0$ be an integer. Determine the reduction formula

$$\int \tan^n(x)dx = \frac{1}{n-1}\tan^{n-1} - \int \tan^{n-2} dx$$

Use the reduction formula to determine $\int \tan^5(x) dx$ and $\int \tan^6(x) dx$.

Additional recommended problems (not for submission)

- ${\bf B1.}\,$ Determine the following reduction formulae:
 - (a) Let $n \geq 0$ be an integer. Use integration by parts to determine the reduction formula

$$\int \cos^n(x)dx = \frac{1}{n}\cos^{n-1}\sin(x) + \frac{n-1}{n}\int \cos^{n-2}(x)dx$$

Use the reduction formula to compute $\int \cos^7(x) dx$.

(b) Let $n \geq 0$ be an integer. Use integration by parts to determine the reduction formula

$$\int (x^2+1)^n dx = \frac{x(x^2+1)^n}{2n+1} - \frac{2n}{2n+1} \int (x^2+1)^{n-1} dx$$

(Hint: the identity $x^2(x^2+1)^k = (x^2+1)^{k+1} - (x^2+1)^k$ will be useful) Use the reduction formula to compute $\int (x^2+1)^4 dx$.

Challenging Problems