Practice Examination III

Trigonometric Identities, Integral Formulae and Power Series

You may use the following identities and formulae without proof.
a.

$$
\begin{aligned}
& \cos ^{2}(x)+\sin ^{2}(x)=1 \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

b.

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
& =1-2 \sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1
\end{aligned}
$$

c.

$$
\begin{gathered}
\int \sec (x) d x=\log (\sec (x)+\tan (x))+C \\
\int \tan (x) d x=\log |\sec (x)|+C
\end{gathered}
$$

d.

$$
\frac{d}{d x}(\tan (x))=\sec ^{2}(x)
$$

$$
\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)
$$

e.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\frac{1}{a} \arcsin \left(\frac{x}{a}\right)+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C
\end{aligned}
$$

f.

$$
\begin{aligned}
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

g.

$$
\begin{aligned}
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
\end{aligned}
$$

h.

$$
\begin{aligned}
\log (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k} x^{k}
\end{aligned}
$$

Instructions:

- Write your name on this exam and any extra sheets you hand in.
- Sign the Honor Code Pledge below.
- You will have 180 minutes to complete this Examination.
- You must attempt Problem 1.
- You must attempt at least five of Problems 2, 3, 4, 5, 6, 7, 8 .
- If you attempt more than five problems from Problems 2, 3, 4, 5, 6, 7, 8, then your final score will be the sum of your score for Problem 1 and the highest possible score obtained from five of the remaining problems.
- There are 5 blank pages attached for scratchwork.
- Calculators are not permitted.
- Explain your answers clearly and neatly and in complete English sentences.
- State all Theorems you have used from class. To receive full credit you will need to justify each of your calculations and deductions coherently and fully.
- Correct answers without appropriate justification will be treated with great skepticism.

1. (20 points) True/False:
(a) $\sum_{n=2}^{\infty} \frac{4^{n}}{7^{n+1}}$ is convergent.
(b) Let $A=(-1,2]$. The function $f(x)=\frac{1-x}{1+x}$ with domain A admits an inverse function.
(c) Let $e=\exp (1)$ be Euler's number. Then,

$$
\int_{1}^{\exp (3)} \frac{d t}{t}=e^{3}
$$

(d) The function $y=\frac{1}{1+x}$ is a solution to the differential equation

$$
y^{\prime}=y+x y .
$$

(e) The function $f(x)=\frac{5}{3+x}$ admits the power series representation

$$
\frac{5}{3}-\frac{5}{3} x+\frac{5}{3} x^{2}-\frac{5}{3} x^{3}+\ldots \quad \text { whenever }|x|<1 .
$$

(f) Let $f(x)=\frac{1}{1-x}$ and let $R_{n}(x)$ be the $n^{t h}$-degree remainder of its Taylor series centred at $c=0$. Then,

$$
\left|R_{n}(x)\right| \leq \frac{1}{n+1}, \quad \text { whenever }|x| \leq \frac{1}{2}
$$

(g) The series $\sum_{n=1}^{\infty} \frac{\sin (n)-1}{n^{3}+2}$ is convergent.
(h)

$$
\int_{0}^{2} \frac{1}{(1-x)^{2}} d x=-2
$$

(i) Let $f(x)=\frac{1}{2-x}$. Any power series representation of $f(x)$ has radius of convergence $R=2$.
(j) Let $f(x)$ be a solution of the differential equation

$$
f^{\prime}(x)=\frac{2 x}{f(x)}
$$

The set of points $(x, f(x))$ in the plane describes an ellipse.
2. Solve the following integration problems. Show all your working and provide complete justification.
(a) (10 points)

$$
\int \frac{1}{\sqrt{x^{2}+4 x+3}} d x
$$

(b) (10 points)

$$
\int 2 x \log (x+1) d x
$$

3. (a) (10 points) Let $x \neq 1$ be a real number. Consider the mathematical proposition

$$
P(n): \quad 1+2 x+3 x^{2}+\ldots+n x^{n-1}=\frac{1-(n+1) x^{n}+n x^{n+1}}{(1-x)^{2}} \quad n \geq 1
$$

Using induction, show $P(n)$, for all $n \geq 1$.
(b) (10 points) By considering the sequence of partial sums of the power series $\sum_{n=1}^{\infty} n x^{n-1}$, use problem (a) to determine all x for which the series $\sum_{n=1}^{\infty} n x^{n-1}$ converges.
4. Consider the function $f(x)$ with Taylor series centred at $c=3$

$$
\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{12^{n} n}
$$

(a) (10 points) Determine the interval of convergence of the power series.
(b) (5 points) What is $f^{\prime \prime \prime}(3)$?
(c) (5 points) Determine the Taylor series centred at $c=3$ of $f^{\prime}(x)$, the derivative of $f(x)$.
5. (a) (10 points) Determine whether the following improper integral is convergent or divergent. If convergent, determine its limit.

$$
\int_{0}^{2} \frac{1}{4-x^{2}} d x
$$

(b) (10 points) Determine whether the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(2 n)!}{(3 n)!}
$$

6. (a) (10 points) Determine the solution to the initial value problem

$$
x y^{\prime}+y=x^{2}+1, \quad y(1)=1
$$

(b) (10 points) Determine the general solution to the differential equation

$$
y^{\prime}=x-4 x y
$$

7. Consider the sequence $\left(a_{n}\right)_{n \geq 1}$ where

$$
a_{1}=\sqrt{7}, \quad a_{n+1}=\sqrt{a_{n}+7}, \quad n=1,2,3, \ldots
$$

(a) (5 points) Using induction, show that $\left(a_{n}\right)$ is increasing.
(b) (5 points) Using induction, show that $a_{n} \leq 4$, for $n=1,2,3, \ldots$.
(c) (5 points) Explain carefully why $\left(a_{n}\right)$ is a convergent sequence.
(d) (5 points) Determine $L=\lim _{n \rightarrow \infty} a_{n}$.
8. (a) (10 points) Determine the Taylor series of $f(x)=3 \sin (x-1)$ centred at $c=1$.
(b) (10 points) Determine those x for which the Taylor series you obtained in part (a) equals $f(x)$.

