Practice Examination II

Trigonometric Identities and Integral Formulae

You may use the following identities and formulae without proof.
a.

$$
\begin{aligned}
& \cos ^{2}(x)+\sin ^{2}(x)=1 \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

b.

$$
\begin{aligned}
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
& =1-2 \sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1
\end{aligned}
$$

c.

$$
\begin{gathered}
\int \sec (x) d x=\log (\sec (x)+\tan (x))+C \\
\int \tan (x) d x=\log |\sec (x)|+C
\end{gathered}
$$

e.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\frac{1}{a} \arcsin \left(\frac{x}{a}\right)+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C
\end{aligned}
$$

Instructions:

- Write your name on this exam and any extra sheets you hand in.
- Sign the Honor Code Pledge below.
- You will have 60 minutes to complete this Examination.
- You must attempt Problem 1.
- You must attempt at least three of Problems 2, 3, 4, 5 .
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the highest possible score obtained from three of the four remaining problems.
- There are 3 blank pages attached for scratchwork.
- Calculators are not permitted.
- Explain your answers clearly and neatly and in complete English sentences.
- State all Theorems you have used from class. To receive full credit you will need to justify each of your calculations and deductions coherently and fully.
- Correct answers without appropriate justification will be treated with great skepticism.

1. (10 points) True/False:
(a) Let $A=[-5,-1]$. Then, the function $f(x)=3-(x+4)^{2}$ with domain A has an inverse function.
(b) Using the inverse trigonometric substitution $2 x=\sin (t)$, you determine

$$
\int f(x) d x=\sec (t)+\cos (2 t)+t+C
$$

for some function $f(x)$. Then,

$$
\frac{d}{d x}\left(\frac{1}{\sqrt{1-4 x^{2}}}-4 x^{2}+\arcsin (2 x)\right)=f(x)
$$

(c) Let $a=\exp (b)$. Then,

$$
\int_{1}^{b} \frac{1}{t} d t=a .
$$

(d) The arc length of the curve $y=\frac{2}{3} x^{3 / 2}$ between $x=1$ and $x=3$ is $\frac{8}{3}$.
(e)

$$
\int \frac{x}{\sqrt{\left(1+x^{2}\right)^{5}}} d x=-\frac{1}{3} \frac{1}{\left(1+x^{2}\right)^{3 / 2}}+C
$$

2. Solve the following antiderivative problems. Show all your working and provide complete justification.
(a) (10 points)

$$
\int \frac{1}{\sqrt{x^{2}+4 x+5}} d x
$$

(b) (10 points)

$$
\int x \arctan (x) d x
$$

3. Show all your working and provide complete justification. Let

$$
I_{n}=\int(\log (x))^{n} d x
$$

(a) (10 points) Let n be a natural number. Use integration by parts to show

$$
I_{n}=x(\log (x))^{n}-n I_{n-1}
$$

(b) (10 points) Let $e=\exp (1)$ be Euler's number. Using induction show that, for n a natural number,

$$
\int_{1}^{e}(\log (x))^{n} d x=k e+(-1)^{n-1} n!
$$

where k is an integer.
4. Show all your working and provide complete justification.
(a) (10 points) Determine the partial fraction decomposition of the rational function

$$
f(x)=\frac{x^{2}+4 x+1}{x^{2}\left(x^{2}+1\right)}
$$

(b) (10 points) Determine the integral

$$
\int f(x) d x
$$

5. (20 points) Find the area of the surface of revolution (about the x-axis) obtained from the graph of the function $f(x)=(x-1)^{3}$ between $x=1$ and $x=2$.
