Practice Examination I

Instructions:

- You must attempt Problem 1.
- Please attempt at least three of Problems 2,3,4,5.
- If you attempt all five problems then your final score will be the sum of your score for Problem 1 and the scores for the three remaining problems receiving the highest number points.
- Calculators are not permitted.

1. (10 points) True/False:
(a) Let $\left(a_{n}\right)$ be a sequence. If the sequence of even terms $\left(a_{2}, a_{4}, a_{6}, \ldots\right)$ is convergent with limit L then $\left(a_{n}\right)$ is convergent with limit L.
(b) Let $\sum a_{n}$ be a series. If the associated equence of partial sums $\left(s_{m}\right)$ is decreasing and bounded then the sequence $\left(a_{n}\right)$ is convergent.
(c) Let $\left(a_{n}\right)$ be a bounded sequence. Suppose that there exists N such that the sequence $\left(a_{n}\right)_{n \geq N}$ is decreasing. Then, $\left(a_{n}\right)$ is convergent.
(d) Let $\sum a_{n}$ be a series such that $a_{n}>0$. Let $\left(s_{m}\right)$ be the associated sequence of partial sums. If there exists K such that $s_{m}<K$, for $m=1,2,3, \ldots$, then $\sum a_{n}$ is convergent.
(e) Let $\sum(-1)^{n} b_{n}$, where $b_{n}>0$, be an alternating series. If $\sum b_{n}$ is convergent then $\sum(-1)^{n} b_{n}$ is convergent.
2. Determine if the following sequences converge or diverge. If the sequence converges determine the limit. Give a careful explanation of your solution.
(a) (10 points)

$$
\left(\frac{\sin \left(\frac{1}{n}\right)}{2^{n}}\right)_{n \geq 1}
$$

(b) (10 points)

$$
\left(\frac{n}{2+(-1)^{n}}\right)_{n \geq 1}
$$

3. (20 points) Consider the sequence $\left(a_{n}\right)$, where

$$
a_{n}=\frac{2^{n}}{n!}, \quad n=1,2,3, \ldots
$$

(a) Show that $\left(a_{n}\right)$ is a decreasing sequence.
(b) Determine an upper and lower bound for the sequence $\left(a_{n}\right)$.
(c) Explain carefully why the series $\left(a_{n}\right)$ is convergent.
(d) Determine $\lim _{n \rightarrow \infty} a_{n}$.
4. (20 points) Determine if the following series is convergent or divergent. If convergent you do not need to determine its limit. Justify your answer carefully.

$$
\sum_{n=1}^{\infty} \frac{\sin (n)}{7^{n}-2^{n}}
$$

5. Determine whether the following series is absolutely convergent, conditionally convergent or divergent. If convergent you do not need to determine its limit. Justify your answer carefully.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n \pi^{-n^{2}}=\pi^{-1}-2 \pi^{-4}+3 \pi^{-9}-\ldots
$$

