Middlebury
College

Calculus II: Fall 2017

Contact: gmelvin@middlebury.edu

October 9 Lecture

An exp-TRAORDINARY FUNCTION II

Today we continue our investigation of the exp-traordinary function. We will investigate the differentiability of $\exp (x)$ and show that it satisfies a particular differential equation. Next lecture we will see how this differential equation is related to the problem of finding the inverse function of $\exp (x)$.

1 The exponential function Recall the function

$$
\exp (x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Last lecture you determined the following properties of $\exp (x)$:

- $\exp (x)>1$, for any real number $x>0$.
- $\exp (0)=1$.
- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x)>0$, for any real number x.
- $\exp (x+y)=\exp (x) \cdot \exp (y)$, for any real numbers x, y.

We call property ($*$) the Remarkable Property of $\exp (x)$.
Moreover, the function $\exp (x)$ is strictly increasing:
if $x<y$, so that $y=x+h$ with $h>0$, then

$$
\begin{aligned}
\exp (y) & =\exp (x+h) \\
& =\exp (x) \exp (h), \quad \text { by }(*) \\
& >\exp (x), \quad \text { since } \exp (h)>1 .
\end{aligned}
$$

Check your understanding

Based on these investigations, draw the graph of the function $\exp (x)$.

Remark 1.1. 1. Determining the value $\exp (x)$, for a given real number $x \neq 0$, is difficult: this requires our being able to determine the limit of the series

$$
1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

2. Observe that

$$
\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots
$$

This series is a series with positive terms, which implies that its sequence of partial sums $\left(s_{m}\right)$ is strictly increasing. In particular, for any $m=0,1,2, \ldots$,

$$
s_{m}<\exp (1) \quad \text { and } \quad \lim _{m \rightarrow \infty} s_{m}=\exp (1)
$$

Notice that $s_{2}=1+1+\frac{1}{2}=\frac{5}{2}$ and

$$
\sum_{n=2}^{\infty} \frac{1}{n!}=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=1
$$

Hence,

$$
2.5=\frac{5}{2}=s_{2}<\exp (1)=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<1+1+1=3
$$

so that

$$
2.5<\exp (1)<3
$$

3. In Problem Set 4 you will have the opportunity to show that

$$
\exp (1)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

and, more generally,

$$
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

Define Euler's number to be the limit

$$
e \stackrel{\text { def }}{=} \exp (1)
$$

Then, in fact, it can be shown that

$$
\exp (x)=e^{x}
$$

2 O Calculus, Where Art Thou? Let $-1<h<1$ and consider the series

$$
\frac{\exp (h)-1}{h}=1+\frac{h}{2!}+\frac{h^{2}}{3!}+\ldots=1+\sum_{n=1}^{\infty} \frac{h^{n}}{(n+1)!}
$$

Check your understanding

1. Let $a_{n}=\frac{h^{n}}{(n+1)!}$. Use the ratio test to show that the series $1+\sum_{n=1}^{\infty} a_{n}$ is (absolutely) convergent.
2. As h gets close to 0 , describe what happens to the expression

$$
\frac{\exp (h)-1}{h}
$$

3. Complete the following statement

$$
\lim _{h \rightarrow 0} \frac{\exp (h)-1}{h}=
$$

\qquad

Recall what it means for a function $f(x)$ to be differentiable at $x=a$: we say that $f(x)$ is differentiable at $x=a$ if the following limit exists

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

In this case we write

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If $f(x)$ is differentiable for every input value x, then we define the derivative of $f(x)$ to be the function

$$
f^{\prime}(x) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

We also write

$$
\frac{d}{d x} f(x)=f^{\prime}(x)
$$

4. Let a be a real number. Using the Remarkable Property, show that

$$
\frac{\exp (a+h)-\exp (a)}{h}=\exp (a)\left(\frac{\exp (h)-1}{h}\right)
$$

5. Use the above formula to deduce that

$$
\exp ^{\prime}(a)=\exp (a), \quad \text { for every real number } a
$$

6. Complete the following statement:

Let a be a real number. Then, $\exp (x)$ is \qquad at \qquad Moreover,

$$
\frac{d}{d x} \exp (x)=
$$

