Middlebury
College

Calculus II: Fall 2017
 Contact: gmelvin@middlebury.edu

October 6 Lecture

An exp-TRAORDINARY FUNCTION

In today's lecture we will define a very interesting function. Investigating this function will lead us to the notion of an inverse function, and will take our mathematical journey back to the familiar calculus realm of differentiation and integration.

1 Defining a function via a series Let x be any real number and consider the series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

Mathematical workout - Flex those muscles
Use the ratio test to show that the above series is (absolutely) convergent, for every real number x.

By assigning to every real number x the limit of the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, we have provided the definition for a well-defined function

$$
\text { (INPUT) } \quad x \quad \mapsto \quad \exp (x) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { (OUTPUT) }
$$

We will call the function $\exp (x)$ just defined the exponential function. Let's investigate some of its basic properties.

Check your understanding

Using the definition of $\exp (x)$, show that $\exp (0)=1, \exp (x)>1$, for any $x>0$, and $\exp (x)>$ $1+x$, for any $x>0$.

2 A remarkable property We are going to investigate a remarkable property of the exponential function. Let x be a real number. For each $m=0,1,2, \ldots$, denote the $m^{t h}$ partial sum of the series $\exp (x)$ by $s_{m}(x)$, so

$$
s_{m}(x)=\sum_{n=0}^{m} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}
$$

Check your understanding

Let x be a real number.

1. Write down the expressions for $s_{0}(x), s_{1}(x), s_{2}(x), s_{3}(x)$.
2. Show that $s_{1}(x) s_{1}(y)=s_{1}(x+y)+$ higher order terms.
3. Show that $s_{2}(x) s_{2}(y)=s_{2}(x+y)+$ higher order terms .
4. Guess the pattern! Complete the following statement

$$
s_{3}(x) s_{3}(y)=\ldots+\text { higher order terms }
$$

5. Guess the general pattern! Complete the following statement: for every $k=0,1,2, \ldots$

$$
s_{k}(x) s_{k}(y)=\ldots+\text { higher order terms }
$$

Recall that

$$
\exp (x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\lim _{n \rightarrow \infty} s_{n}(x)
$$

Complete the following statement:

$$
\begin{equation*}
\exp (x) \cdot \exp (y)= \tag{*}
\end{equation*}
$$

Property (*) has lots of remarkable consequences. For example, suppose that x is any positive real number. Then,

$$
\begin{aligned}
1 & =\exp (0) \\
& =\exp (x+(-x)) \\
& =\exp (x) \cdot \exp (-x)
\end{aligned}
$$

In particular,

- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x) \neq 0$, for any real number x.

Check your understanding

1. Let x be a real number and write $x=2 y=y+y$. Use $(*)$ to show that $\exp (x)=\exp (2 y) \geq 0$. Deduce that $\exp (x)>0$, for every real number x. (Hint: use $\exp (2 y)=\exp (y+y)$.)
2. Let $x<y$ and write $y=x+h$, where $h>0$. Use $(*)$ to show that $\exp (y)>\exp (x)$. (Hint: recall that $\exp (h)>1$ whenever $h>0)$

Hence, the exponential function is strictly increasing.
3. Based on your investigations, draw the graph of the function $\exp (x)$.

Summary

- $\exp (x+y)=\exp (x) \cdot \exp (y)$, for any real numbers x, y.
- $\exp (-x)=\frac{1}{\exp (x)}$, for any real number x.
- $\exp (x)>0$, for any real number x.
- $\exp (x)$ is a strictly increasing function. (**)

We will discuss the consequences of Property ($* *$) in the next Lecture. In particular, over the next week or so we will show the following

- $\exp (x)$ has a functional inverse: there is a function $L(y)$ satisfying

$$
\exp (L(y))=y, \quad L(\exp (x))=x
$$

$\exp (x)$ is a differentiable function; hence, $\exp (x)$ is a continuous function.

- $\exp (x)$ is the solution of a differential equation:

$$
\frac{d}{d x} f(x)=f(x)
$$

Remark 2.1. 1. Observe that

$$
\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\ldots
$$

This series is a series with positive terms, which implies that its sequence of partial sums $\left(s_{m}\right)$ is strictly increasing. In particular, for any $m=0,1,2, \ldots$,

$$
s_{m}<\exp (1) \quad \text { and } \quad \lim _{m \rightarrow \infty} s_{m}=\exp (1)
$$

Notice that $s_{2}=1+1+\frac{1}{2}=\frac{5}{2}$ and

$$
\sum_{n=2}^{\infty} \frac{1}{n!}=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}}=1
$$

Hence,

$$
2.5=\frac{5}{2}=s_{3}<\exp (1)=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots<1+1+1=3
$$

so that

$$
2.5<\exp (1)<3
$$

2. In Problem Set 4 you will have the opportunity to show that

$$
\exp (1)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

and, more generally,

$$
\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

