Middlebury
College

Calculus II: Fall 2017
 Contact: gmelvin@middlebury.edu

October 4 Lecture

Supplementary References:

- Single Variable Calculus, Stewart: Section 11.5.
- AP Calculus BC, Khan Academy: Estimating infinite series.

Approximating real numbers

In today's lecture we will discuss approaches to determining approximations of real numbers using sequences and series.

1 Approximations and the ratio test Recall the following series from the September 28 Lecture

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} \tag{*}
\end{equation*}
$$

Let $b_{n}=\frac{n^{2}}{2^{n}}$. On September 28, we determined the following facts:
Fact 1. For $n \geq 4, b_{n} \leq b_{3}\left(\frac{8}{9}\right)^{n-3}$.
Fact 2. The series $\sum_{n=1}^{\infty} b_{n}$ is convergent with limit L.

BASIC QUESTION: what is L ?

Better question: can we approximate L ?
Definition 1.1. Let $\sum a_{n}$ be a convergent series having positive terms with limit L. Let $\left(s_{m}\right)$ be the associated sequence of partial sums. Define the remainder after m terms to be

$$
R_{m}=L-s_{m}=\sum_{n=m+1}^{\infty} a_{n} .
$$

Check your understanding

1. Let $\sum a_{n}$ be a series and suppose that $R_{10}<0.001$. Explain why s_{10} is an approximation to L, correct to 2 decimal places.
2. For the series ($*$) above, express R_{3} and R_{5} as a series.
3. Use Fact 1 to show that

$$
R_{3} \leq b_{3} \sum_{n=1}^{\infty}\left(\frac{8}{9}\right)^{n} \quad R_{5} \leq b_{3} \sum_{n=3}^{\infty}\left(\frac{8}{9}\right)^{n} \quad R_{10} \leq b_{3} \sum_{n=8}^{\infty}\left(\frac{8}{9}\right)^{n}
$$

4. Using the formula (Problem Set 2, B1)

$$
\sum_{n=k}^{\infty} r^{k}=\frac{r^{k}}{1-r}, \quad \text { whenever }-1<r<1
$$

show that $b_{3} \sum_{n=k}^{\infty}\left(\frac{8}{9}\right)^{k}=\frac{8^{k-1}}{9^{k-2}}$.
5. How closely do the partial sums s_{3} and s_{5} approximate L ? How closely does s_{10} approximate L? (You may want to use the calculator on your mobile device)

STOP! Await further instructions.

The investigation above can be generalised to obtain the following

Ratio Test Approximation Theorem (RTAT)

Let $\sum a_{n}$ be a series of positive terms and let $r_{n}=\frac{a_{n+1}}{a_{n}}$. Suppose that $l=\lim _{n \rightarrow \infty} r_{n}<1$, so that $\sum a_{n}$ converges by the Ratio Test.

- If $\left(r_{n}\right)$ is a decreasing sequence and $r_{n+1}<1$ then

$$
R_{n} \leq \frac{a_{n+1}}{1-r_{n+1}}
$$

- If $\left(r_{n}\right)$ is an increasing sequence then

$$
R_{n} \leq \frac{a_{n+1}}{1-l}
$$

Example 1.2. Consider the series $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$. Letting $a_{n}=\frac{3^{n}}{n!}$, we have

$$
r_{n}=\frac{a_{n+1}}{a_{n}}=\frac{3^{n+1} \cdot n!}{(n+1)!\cdot 3^{n}}=\frac{3}{n+1} \rightarrow 0<1 \quad \text { as } n \rightarrow \infty .
$$

Hence, the series is convergent by the Ratio Test. The sequence (r_{n}) is decreasing and $r_{n}<1$ whenever $n \geq 3$. Hence, by RTAT, the remainder after n terms R_{n} satisfies the estimate

$$
R_{n} \leq \frac{a_{n+1}}{1-r_{n+1}}=\frac{3^{n+1}}{(n+1)!\cdot\left(1-\frac{3}{n+2}\right)}=\frac{3^{n+1}(n+2)}{(n+1)!\cdot(n-1)}
$$

Therefore, to approximate the limit L of the series $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$ to within 3 decimal places it suffices to determine n so that

$$
\frac{3^{n+1}(n+2)}{(n+1)!\cdot(n-1)}<0.0001
$$

as then s_{n} will be correct to 3 decimal places of L. For example, if $n=13$ then we have

$$
\frac{3^{14} \cdot 15}{14!\cdot 12}=0.000068580275751034679606 \ldots<0.0001
$$

and $s_{13}=19.0854 \ldots$ is an approximation to L correct to 3 decimal places.
Mathematical workout - Flex those muscles!
Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}
$$

1. Let $a_{n}=\frac{1}{n 2^{n}}$. Show that

$$
r_{n}=\frac{a_{n+1}}{a_{n}}=\frac{1}{2}\left(1-\frac{1}{n+1}\right)
$$

2. Explain why the series $\sum a_{n}$ is convergent.
3. Explain why the sequence $\left(r_{n}\right)$ is increasing. Show that $\lim _{n \rightarrow \infty} r_{n}=\frac{1}{2}$.
4. Use RTAT to show that the remainder after n terms R_{n} has the estimate

$$
R_{n} \leq \frac{1}{(n+1) 2^{n}}
$$

5. Show that the $10^{\text {th }}$ partial sum s_{10} provides an approximation of $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ correct to 3 decimal places.
6. Determine the limit $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}$ to 3 decimal places.
